Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro. 2012

Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.

Human telomeres consist of multiple tandem hexameric repeats, each containing a guanine triplet. Guanosine-rich clusters are highly susceptible to oxidative base damage, necessitating base excision repair (BER). Previous demonstration of enhanced strand displacement synthesis by the BER component DNA polymerase β in the presence of telomere protein TRF2 suggests that telomeres employ long-patch (LP) BER. Earlier analyses in vitro showed that efficiency of BER reactions is reduced in the DNA-histone environment of chromatin. Evidence presented here indicates that BER is promoted at telomeres. We found that the three proteins that contact telomere DNA, POT1, TRF1 and TRF2, enhance the rate of individual steps of LP-BER and stimulate the complete reconstituted LP-BER pathway. Thought to protect telomere DNA from degradation, these proteins still apparently evolved to allow selective access of repair proteins.

UI MeSH Term Description Entries
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072481 DNA Ligase ATP ATP-dependent cellular enzyme which catalyzes DNA replication, repair and recombination through formation of internucleotide ester bonds between phosphate and deoxyribose moieties. Vertebrate cells encode three well-characterized DNA ligases, DNA ligase I, III and IV, all of which are related in structure and sequence. DNA ligases either require ATP or NAD. However, archaebacterial, viral, and some eubacterial DNA ligases are ATP-dependent. ATP-Dependent DNA Ligase,DNA Ligase I,DNA Ligase II,DNA Ligase III,DNA Ligase IIIalpha,DNA Ligase IV,DNA Ligases, ATP-Dependent,LIGIIIalpha Protein,Polydeoxyribonucleotide Synthase ATP,ATP Dependent DNA Ligase,ATP, DNA Ligase,ATP, Polydeoxyribonucleotide Synthase,ATP-Dependent DNA Ligases,DNA Ligase, ATP-Dependent,DNA Ligases, ATP Dependent,IIIalpha, DNA Ligase,Ligase ATP, DNA,Ligase I, DNA,Ligase II, DNA,Ligase III, DNA,Ligase IIIalpha, DNA,Ligase IV, DNA,Ligase, ATP-Dependent DNA,Ligases, ATP-Dependent DNA,Synthase ATP, Polydeoxyribonucleotide
D000089804 Shelterin Complex A TELOMERE cap complex consisting of telomere-specific proteins in association with telomeric DNA such as telomeric dsDNA-sDNA junction. They are involved in the protection of chromosome ends and TELOMERASE regulation and play a role in CELLULAR SENESCENCE and ageing-related pathology. In general it consists of six mostly TELOMERE-BINDING PROTEINS (POT1, RAP1, TIN2, TPP1, TRF1, and TRF2). CST Complex,Ctc1-Stn1-Ten1 Complex,POT1-TPP1 Shelterin Complex,Telomere Cap Complex,Telomere POT1-TPP1 Complex,Telomeric Capping Complex,Telomeric Stn1-Ten1 Capping Complex,Telosome,Capping Complex, Telomeric,Complex, CST,Complex, Ctc1-Stn1-Ten1,Complex, POT1-TPP1 Shelterin,Complex, Shelterin,Complex, Telomere POT1-TPP1,Complex, Telomeric Capping,Ctc1 Stn1 Ten1 Complex,POT1 TPP1 Shelterin Complex,POT1-TPP1 Complex, Telomere,Shelterin Complex, POT1-TPP1,Telomere POT1 TPP1 Complex,Telomeric Stn1 Ten1 Capping Complex,Telosomes
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D016615 Telomere A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs. Telomeres
D043603 DNA-(Apurinic or Apyrimidinic Site) Lyase A DNA repair enzyme that catalyses the excision of ribose residues at apurinic and apyrimidinic DNA sites that can result from the action of DNA GLYCOSYLASES. The enzyme catalyzes a beta-elimination reaction in which the C-O-P bond 3' to the apurinic or apyrimidinic site in DNA is broken, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate. This enzyme was previously listed under EC 3.1.25.2. Apurinic DNA Endonuclease,DNA Lyase (Apurinic or Apyrimidinic),Endodeoxyribonuclease (Apurinic or Apyrimidinic),AP Endonuclease,AP Lyase,Apurine-Apyrimidine Endonuclease,Apurinic Endonuclease,Apurine Apyrimidine Endonuclease,DNA Endonuclease, Apurinic,Endonuclease, AP,Endonuclease, Apurine-Apyrimidine,Endonuclease, Apurinic,Endonuclease, Apurinic DNA
D045585 Flap Endonucleases Endonucleases that remove 5' DNA sequences from a DNA structure called a DNA flap. The DNA flap structure occurs in double-stranded DNA containing a single-stranded break where the 5' portion of the downstream strand is too long and overlaps the 3' end of the upstream strand. Flap endonucleases cleave the downstream strand of the overlap flap structure precisely after the first base-paired nucleotide, creating a ligatable nick. Flap Endonuclease,FEN-1,Fen1 Protein,Flap Endonuclease-1,RAD2 Homolog-1 Nuclease,RTH-1 Nuclease,Endonuclease, Flap,Endonuclease-1, Flap,Endonucleases, Flap,Flap Endonuclease 1,Nuclease, RTH-1,RAD2 Homolog 1 Nuclease,RTH 1 Nuclease

Related Publications

Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
August 2010, PloS one,
Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
August 2010, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver,
Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
October 2009, Molecular and cellular biology,
Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
March 2000, Molecular and cellular biology,
Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
September 2008, The Journal of biological chemistry,
Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
September 2004, Human molecular genetics,
Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
August 2021, Molecular medicine reports,
Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
February 1999, The Journal of biological chemistry,
Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
June 2003, Nature,
Adam S Miller, and Lata Balakrishnan, and Noah A Buncher, and Patricia L Opresko, and Robert A Bambara
April 2003, EMBO reports,
Copied contents to your clipboard!