Estimation of the tryptophan requirement in piglets by meta-analysis. 2012

A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
AJINOMOTO EUROLYSINE S.A.S., 153 rue de Courcelles, F-75817 Paris cedex 17, France. Simongiovanni_Aude@eli.ajinomoto.com

There is no consensus concerning the Trp requirement for piglets expressed relative to Lys on a standardized ileal digestible basis (SID Trp : Lys). A meta-analysis was performed to estimate the SID Trp : Lys ratio that maximizes performance of weaned piglets between 7 and 25 kg of BW. A database comprising 130 experiments on the Trp requirement in piglets was established. The nutritional values of the diets were calculated from the composition of feed ingredients. Among all experiments, 37 experiments were selected to be used in the meta-analysis because they were designed to express the Trp requirement relative to Lys (e.g. Lys was the second-limiting amino acid in the diet) while testing at least three levels of Trp. The linear-plateau (LP), curvilinear-plateau (CLP) and asymptotic (ASY) models were tested to estimate the SID Trp : Lys requirement using average daily gain (ADG), average daily feed intake (ADFI) and gain-to-feed ratio (G : F) as response criteria. A multiplicative trial effect was included in the models on the plateau value, assuming that the experimental conditions affected only this parameter and not the requirement or the shape of the response to Trp. Model choice appeared to have an important impact on the estimated requirement. Using ADG and ADFI as response criteria, the SID Trp : Lys requirement was estimated at 17% with the LP model, at 22% with the CLP model and at 26% with the ASY model. Requirement estimates were slightly lower when G : F was used as response criterion. The Trp requirement was not affected by the composition of the diet (corn v. a mixture of cereals). The CLP model appeared to be the best-adapted model to describe the response curve of a population. This model predicted that increasing the SID Trp : Lys ratio from 17% to 22% resulted in an increase in ADG by 8%.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D009751 Nutritional Requirements The amounts of various substances in food needed by an organism to sustain healthy life. Dietary Requirements,Nutrition Requirements,Dietary Requirement,Nutrition Requirement,Nutritional Requirement,Requirement, Dietary,Requirement, Nutrition,Requirement, Nutritional,Requirements, Dietary,Requirements, Nutrition,Requirements, Nutritional
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model

Related Publications

A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
January 2001, Archiv fur Tierernahrung,
A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
December 2006, Journal of animal physiology and animal nutrition,
A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
December 2006, Journal of animal physiology and animal nutrition,
A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
March 2010, Journal of animal science,
A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
August 1988, Poultry science,
A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
August 1952, Nutrition reviews,
A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
September 1983, The British journal of nutrition,
A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
March 1978, Journal of food protection,
A Simongiovanni, and E Corrent, and N Le Floc'h, and J van Milgen
April 1974, Journal of animal science,
Copied contents to your clipboard!