Evidence for a non-myristoylated pool of the 80 kDa protein kinase C substrate of rat brain. 1990

R A McIlhinney, and K McGlone
Department of Pharmacology, University of Oxford, U.K.

A protein of 80 kDa apparent molecular mass was found to be specifically myristolylated in rat brain cytosols derived from either whole brain or synaptosomes. The attachment of the fatty acid took place in the absence of protein synthesis, since the cytosols did not incorporate [14C]lysine into protein, nor did cycloheximide affect the incorporation of the myristic acid into the protein. The fatty acid was incorporated into the protein via an acid-labile/alkali-resistant band, and Pronase digestion of the labelled protein showed that the lipid was covalently linked to a glycine residue. Together, these data suggested that the myristic acid was amide-linked to the N-terminal residue of the protein. The protein was identified as one of the major protein kinase C substrates, the MARCKS (myristoylated alanine-rich C kinase substrate) protein, by showing that Ca2+ stimulated its phosphorylation, by its heat stability and by immune precipitation (using an antiserum to the MARCKS protein). Incorporation of myristic acid into intact protein continued for up to 12 h, despite the fact that over this period some degradation of the protein could be demonstrated. In pulse-chase experiments, the pattern of loss of the incorporated fatty acid was similar to that of the protein itself, and therefore the loss of radioactivity probably reflects protein degradation rather than specific de-acylation of the protein. Together, these results suggest that there is a pool of unacylated MARCKS protein in the rat brain.

UI MeSH Term Description Entries
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009227 Myristic Acids 14-carbon saturated monocarboxylic acids. Tetradecanoic Acids,Acids, Myristic,Acids, Tetradecanoic
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000076250 Myristoylated Alanine-Rich C Kinase Substrate A membrane and ACTIN CYTOSKELETON associated, N-terminal myristoylated protein that binds CALMODULIN and is a prominent substrate for PROTEIN KINASE C. Both phosphorylation and poly(ADP)-ribosylation inhibit its F-ACTIN crosslinking activity; phosphorylation also causes MARCKS to relocate from the membrane to cytoplasm. ACAMP-81,MARCKS Protein,Myristoylated Alanine Rich C Kinase Substrate

Related Publications

R A McIlhinney, and K McGlone
October 1992, Chemical & pharmaceutical bulletin,
R A McIlhinney, and K McGlone
October 1991, Journal of neuroscience research,
R A McIlhinney, and K McGlone
September 1993, Archives of biochemistry and biophysics,
R A McIlhinney, and K McGlone
April 1993, The Journal of biological chemistry,
R A McIlhinney, and K McGlone
May 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R A McIlhinney, and K McGlone
March 2003, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
Copied contents to your clipboard!