Flavone acetic acid and plasma protein binding. 1990

J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
Department of Internal Medicine, Wayne State University, Detroit, MI 48201.

Both the capacity of healthy human, cancer patient, and mouse plasma proteins to bind flavone acetic acid (FAA) and the qualitative differences in the plasma protein-binding site were studied. The binding capacity of plasma proteins for FAA was saturated within the therapeutic range in both species. The binding of FAA to plasma protein was significantly greater in both healthy human and cancer patient plasma than in mouse plasma. Plasma from patients with cancer bound on the average less FAA than did healthy patient plasma. The concentration of albumin in the plasma varied between healthy humans, cancer patients, and mice, being 5.3 +/- 0.7, 4.7 +/- 0.8, and 3.9 +/- 0.3 g/100 ml, respectively. The protein binding of FAA was found to be dependent on the plasma albumin concentration, but albumin concentration alone was not adequate for the accurate prediction of the percentage of FAA protein bound. Scatchard plots indicated that healthy human plasma had a greater number of high-affinity binding sites than did mouse plasma. FAA binds at the indolebenzodiazepine binding area on albumin and can be displaced from this site by salicylic acid and clofibric acid, but only at supratherapeutic concentrations. Our results indicate that alterations in plasma albumin could contribute to a variable effect with FAA. Therefore, the influence of serum albumin concentration and the nonlinearity of FAA protein binding should be considered in assessment of the appropriateness of a dose schedule for FAA.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002995 Clofibric Acid An antilipemic agent that is the biologically active metabolite of CLOFIBRATE. Clofibrinic Acid,2-(4-Chlorophenoxy)-2-methylpropionic Acid,NSC-1149,p-Chlorophenoxyisobutyrate,p-Chlorophenoxyisobutyric Acid,NSC 1149,NSC1149
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012459 Salicylates The salts or esters of salicylic acids, or salicylate esters of an organic acid. Some of these have analgesic, antipyretic, and anti-inflammatory activities by inhibiting prostaglandin synthesis. Salicylate,Salicylic Acids,Acids, Salicylic

Related Publications

J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
December 1993, Journal of pharmacokinetics and biopharmaceutics,
J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
January 1991, Cancer chemotherapy and pharmacology,
J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
October 1990, Cancer research,
J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
September 1989, European journal of cancer & clinical oncology,
J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
January 1993, European journal of cancer (Oxford, England : 1990),
J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
June 1989, Journal of the National Cancer Institute,
J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
January 1989, Bulletin du cancer,
J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
January 1990, Anticancer research,
J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
January 1988, Cancer chemotherapy and pharmacology,
J Brodfuehrer, and F Valeriote, and K Chan, and L Heilbrun, and T Corbett
February 1987, British journal of cancer,
Copied contents to your clipboard!