T-cell antigen receptors. 1990

K Degitz, and S W Caughman
Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

We have reviewed the knowledge of the human TCR and its implications in dermatology. The TCR has been shown to be the molecule responsible for specific cellular immunity in the same way that immunoglobulins confer humoral immunity. Much has been learned about the complex genomic organization of the TCR chains and how the great diversity of TCR proteins is created by somatic rearrangement of the genes. Most peripheral T cells carry an alpha/beta TCR heterodimer; these cells account for the major T-cell-associated functions such as cytolysis and the modulation of immune responses. The gamma/delta TCR is found on a minor population of T cells, and its functional significance needs further characterization. With respect to dermatology, the knowledge of TCR genetics, along with the application of recombinant DNA methodology, has provided a major improvement in the diagnosis and management of mycosis fungoides. Sezary's syndrome, and other lymphoproliferative diseases of the skin.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008232 Lymphoproliferative Disorders Disorders characterized by proliferation of lymphoid tissue, general or unspecified. Duncan's Syndrome,X-Linked Lymphoproliferative Syndrome,Duncan Disease,Epstein-Barr Virus Infection, Familial Fatal,Epstein-Barr Virus-Induced Lymphoproliferative Disease In Males,Familial Fatal Epstein-Barr Infection,Immunodeficiency 5,Immunodeficiency, X-Linked Progressive Combined Variable,Lymphoproliferative Disease, X-Linked,Lymphoproliferative Syndrome, X-Linked, 1,Purtilo Syndrome,X-Linked Lymphoproliferative Disease,X-Linked Lymphoproliferative Disorder,Disease, Duncan,Disease, X-Linked Lymphoproliferative,Diseases, X-Linked Lymphoproliferative,Disorder, Lymphoproliferative,Disorder, X-Linked Lymphoproliferative,Disorders, Lymphoproliferative,Disorders, X-Linked Lymphoproliferative,Epstein Barr Virus Induced Lymphoproliferative Disease In Males,Epstein Barr Virus Infection, Familial Fatal,Familial Fatal Epstein Barr Infection,Immunodeficiency 5s,Immunodeficiency, X Linked Progressive Combined Variable,Lymphoproliferative Disease, X Linked,Lymphoproliferative Diseases, X-Linked,Lymphoproliferative Disorder,Lymphoproliferative Disorder, X-Linked,Lymphoproliferative Disorders, X-Linked,Lymphoproliferative Syndrome, X-Linked,Lymphoproliferative Syndromes, X-Linked,Purtilo Syndromes,Syndrome, Purtilo,Syndrome, X-Linked Lymphoproliferative,Syndromes, Purtilo,Syndromes, X-Linked Lymphoproliferative,X Linked Lymphoproliferative Disease,X Linked Lymphoproliferative Disorder,X Linked Lymphoproliferative Syndrome,X-Linked Lymphoproliferative Diseases,X-Linked Lymphoproliferative Disorders,X-Linked Lymphoproliferative Syndromes
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands

Related Publications

K Degitz, and S W Caughman
January 1989, Postepy higieny i medycyny doswiadczalnej,
K Degitz, and S W Caughman
January 1982, Anticancer research,
K Degitz, and S W Caughman
January 1987, Methods in enzymology,
K Degitz, and S W Caughman
September 1988, Journal of immunology (Baltimore, Md. : 1950),
K Degitz, and S W Caughman
April 1985, Nihon rinsho. Japanese journal of clinical medicine,
K Degitz, and S W Caughman
January 2009, Archivum immunologiae et therapiae experimentalis,
K Degitz, and S W Caughman
March 2016, Trends in pharmacological sciences,
K Degitz, and S W Caughman
January 1994, Immunologic research,
K Degitz, and S W Caughman
May 1983, Immunology today,
K Degitz, and S W Caughman
January 2022, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!