[T-cell antigen receptors]. 1989

L Ignatowicz

Current data about cell receptors structures, mechanism of action and their genes are presented. The molecular mechanisms involved in T cell receptors diversity during ontogeny is also described.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015329 Gene Rearrangement, T-Lymphocyte Ordered rearrangement of T-cell variable gene regions coding for the antigen receptors. Gene Rearrangement, T-Cell Antigen Receptor,T-Cell Gene Rearrangement,T-Lymphocyte Gene Rearrangement,Gene Rearrangement, T-Cell,Gene Rearrangement, T Cell,Gene Rearrangement, T Cell Antigen Receptor,Gene Rearrangement, T Lymphocyte,Gene Rearrangements, T-Cell,Gene Rearrangements, T-Lymphocyte,Rearrangement, T-Cell Gene,Rearrangement, T-Lymphocyte Gene,Rearrangements, T-Cell Gene,Rearrangements, T-Lymphocyte Gene,T Cell Gene Rearrangement,T Lymphocyte Gene Rearrangement,T-Cell Gene Rearrangements,T-Lymphocyte Gene Rearrangements
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

L Ignatowicz
October 1990, Dermatologic clinics,
L Ignatowicz
January 1982, Anticancer research,
L Ignatowicz
January 1987, Methods in enzymology,
L Ignatowicz
September 1988, Journal of immunology (Baltimore, Md. : 1950),
L Ignatowicz
April 1985, Nihon rinsho. Japanese journal of clinical medicine,
L Ignatowicz
January 2009, Archivum immunologiae et therapiae experimentalis,
L Ignatowicz
January 1994, Immunologic research,
L Ignatowicz
May 1983, Immunology today,
L Ignatowicz
January 2022, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!