Molecular cloning of the Salmonella typhimurium lep gene in Escherichia coli. 1990

J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
Department of Genetics, Center of Biological Sciences, Haren, The Netherlands.

A system is described which enabled the selection of a heterologous lep gene, encoding signal peptidase I, in Escherichia coli. It is based on complementation of an E. coli mutant, in which the synthesis of signal peptidase I can be regulated. With this system the lep gene of Salmonella typhimurium was cloned and the nucleotide sequence was determined. The S. typhimurium lep gene encodes a protein of 324 amino acids. Expression of the gene in the E. coli mutant resulted in suppression of growth inhibition and in the restoration of processing activity under conditions where synthesis of E. coli signal peptidase I was repressed. The cloned S. typhimurium signal peptidase I had an apparent molecular weight of 36,000 daltons, which is in agreement with the calculated molecular weight of 35,782 daltons. The system described for selection of the S. typhimurium lep gene may permit the cloning and expression of other heterologous signal peptidase I genes.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
June 2006, Journal of microbiology (Seoul, Korea),
J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
May 1990, Journal of bacteriology,
J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
February 1988, Journal of bacteriology,
J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
January 1982, Molecular & general genetics : MGG,
J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
August 1983, European journal of biochemistry,
J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
October 1980, Journal of molecular biology,
J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
May 1985, Journal of bacteriology,
J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
August 1991, FEBS letters,
J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
December 1979, Proceedings of the National Academy of Sciences of the United States of America,
J M van Dijl, and R van den Bergh, and T Reversma, and H Smith, and S Bron, and G Venema
June 1988, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
Copied contents to your clipboard!