Cloning and properties of the Salmonella typhimurium tricarboxylate transport operon in Escherichia coli. 1988

K A Widenhorn, and W Boos, and J M Somers, and W W Kay
Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada.

The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in lambda gtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by lambda Tn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar [14C]fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to [14C]fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002951 Citrates Derivatives of CITRIC ACID.
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

K A Widenhorn, and W Boos, and J M Somers, and W W Kay
July 1988, Journal of bacteriology,
K A Widenhorn, and W Boos, and J M Somers, and W W Kay
August 1989, Journal of bacteriology,
K A Widenhorn, and W Boos, and J M Somers, and W W Kay
June 1988, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
K A Widenhorn, and W Boos, and J M Somers, and W W Kay
March 1982, European journal of biochemistry,
K A Widenhorn, and W Boos, and J M Somers, and W W Kay
January 1981, Molecular & general genetics : MGG,
K A Widenhorn, and W Boos, and J M Somers, and W W Kay
January 1988, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
K A Widenhorn, and W Boos, and J M Somers, and W W Kay
December 1966, Science (New York, N.Y.),
K A Widenhorn, and W Boos, and J M Somers, and W W Kay
January 1980, Journal of supramolecular structure,
K A Widenhorn, and W Boos, and J M Somers, and W W Kay
September 1990, Molecular & general genetics : MGG,
K A Widenhorn, and W Boos, and J M Somers, and W W Kay
January 1984, Archives of microbiology,
Copied contents to your clipboard!