Structural analysis of the 5' domain of the HeLa 18S ribosomal RNA by chemical and enzymatic probing. 1990

V Mandiyan, and M Boublik
Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110.

The secondary structure of HeLa 18S rRNA was investigated by a combination of chemical and enzymatic probing techniques. Using four chemical reagents (DMS*, kethoxal, DEPC and CMCT) which react specifically with unpaired bases and two nucleases (RNase T1 and cobra venom nuclease) which cleave the ribopolynucleotides at unpaired guanines and helical segments, we have analyzed the secondary structure of the 5' domain of 18S rRNA isolated from HeLa 40S ribosomal subunits. The sites at which chemical modifications and nuclease cleavages occurred were identified by primer extension using synthetic deoxyoligonucleotides and reverse transcriptase. These studies led to the deduction of an intra-RNA pairing pattern from the available secondary structure models based on comparative sequence analysis. Apart from the general canonical pairing we have identified noncanonical U-U, G-A, A-G, A-C, C-A and G-G pairing in HeLa 18S rRNA. The differential reactivity of bases to chemical reagents has enabled us to predict the possible configuration of these bases in some of the noncanonical pairing. The absence of chemical reactivities and cobra venom nuclease sensitivity in the terminal loops of helices 6 and 12 indicate a tertiary interaction unique to HeLa 18S rRNA. We have confirmed the existence of the complex tertiary folding recently proposed (Gutell and Woese 1990 Proc. Natl. Acad. Sci. 87, 663-667) for the universally conserved helix 19 in HeLa 18S rRNA. The complementarity of chemical modifications and enzymatic cleavages provided experimental evidence for the proposal of a model structure for the 655 nucleotides of the 5' domain of HeLa 18S rRNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012337 RNA, Ribosomal, 18S Constituent of the 40S subunit of eukaryotic ribosomes. 18S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes. 18S Ribosomal RNA,18S RRNA,RNA, 18S Ribosomal,Ribosomal RNA, 18S
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

V Mandiyan, and M Boublik
January 1988, Methods in enzymology,
V Mandiyan, and M Boublik
June 1984, Nucleic acids research,
V Mandiyan, and M Boublik
February 1993, International journal for parasitology,
V Mandiyan, and M Boublik
June 2003, Systematic biology,
Copied contents to your clipboard!