Chemical probing of adenine residues within the secondary structure of rabbit 18S ribosomal RNA. 1988

A Rairkar, and H M Rubino, and R E Lockard
Department of Biochemistry, Cornell University Medical College, New York, New York 10021.

The location of unpaired adenine residues within the secondary structure of rabbit 18S ribosomal RNA was determined by chemical probing. Naked 18S rRNA was first prepared by digestion of purified 40S subunits with matrix-bound proteinase K in sodium dodecyl sulfate, thereby omitting the use of nucleic acid denaturants. Adenines within naked 18S rRNA were chemically probed by using either diethyl pyrocarbonate or dimethyl sulfate, which specifically react with unpaired nucleotides [Peattie, D. A., & Gilbert, W. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 4679-4682]. Adenine modification sites were identified by polyacrylamide sequencing gel electrophoresis either upon aniline-induced strand scission of 32P-end-labeled intact and fragmented rRNA or by primer extension using sequence-specific DNA oligomers with reverse transcriptase. The data indicate good agreement between the general pattern of adenine reactivity and the location of unpaired regions in 18S rRNA determined by comparative sequence analysis [Chan, Y.-L., Gutell, R., Noller, H. F., & Wool, I. G. (1984) J. Biol. Chem. 259, 224-230]. The overall reactivity of adenine residues toward single-strand-specific chemical probes was, also, similar for both rabbit and Escherichia coli small rRNA. The number of strongly reactive adenines appearing within phylogenetically determined helical segments, however, was greater in rabbit 18S rRNA than for E. coli 16S rRNA. Some of these adenines were found clustered in specific helices. Such differences suggest a greater irregularity of many of the helical elements within mammalian 18S rRNA, as compared with prokaryotic 16S rRNA. These helical irregularities could be important for protein association and also may represent biologically relevant flexible regions of the molecule.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Rairkar, and H M Rubino, and R E Lockard
July 2006, Biochemistry,
A Rairkar, and H M Rubino, and R E Lockard
June 1984, Nucleic acids research,
A Rairkar, and H M Rubino, and R E Lockard
September 1994, Biochimica et biophysica acta,
A Rairkar, and H M Rubino, and R E Lockard
December 1990, Nucleic acids research,
A Rairkar, and H M Rubino, and R E Lockard
January 1982, Biochemical Society symposium,
A Rairkar, and H M Rubino, and R E Lockard
April 1994, Nucleic acids research,
A Rairkar, and H M Rubino, and R E Lockard
November 1970, Science (New York, N.Y.),
A Rairkar, and H M Rubino, and R E Lockard
December 2014, Journal of cellular biochemistry,
Copied contents to your clipboard!