Effect of growth conditions on the involvement of cytochrome c in electron transport, proton translocation and ATP synthesis in the facultative methylotroph Pseudomonas AM1. 1979

C W Keevil, and C Anthony

The stoicheiometry of proton translocation, the amounts of cytochromes firmly bound to membranes, and cell yields with respect to succinate and O(2) have been measured in the facultative methylotroph Pseudomonas AM1 and in the mutant lacking cytochrome c (mutant PCT76) during carbon-limited growth and carbon-excess growth. -->H(+)/O ratios during endogenous respiration of about 4 were measured in wild-type bacteria grown in carbon-excess conditions, and in the mutant in all growth conditions. During methanol- or succinate-limited growth of wild-type bacteria the -->H(+)/O ratio increased to about 6. Cell yields with respect to succinate and O(2) were higher in wild-type than in the mutant lacking cytochrome c by an amount suggesting loss in the mutant of 30% of the ATP-generating capacity of wild-type bacteria. During carbon-limited growth on methanol or succinate some cytochrome c was tightly bound to bacterial membranes, whereas none was tightly bound in bacteria grown in batch-culture or in NH(4) (+)-limited conditions. It is proposed that the role of cytochrome c in Pseudomonas AM1 depends on growth conditions and hence on the ;needs' of the bacteria. During growth in carbon-excess conditions it is only required for methanol oxidation, mediating between methanol dehydrogenase and cytochrome a/a(3). In these conditions oxidation of NADH and succinate by way of cytochrome b and cytochrome a/a(3) occurs without the mediation of cytochrome c. This is the only route for oxidation of NADH and succinate in the cytochrome c-deficient mutant in all growth conditions. During carbon-limited growth the cytochrome c becomes bound to the membrane in such a way that it can mediate between cytochromes b and a/a(3), hence becoming involved in proton translocation and ATP synthesis during NADH and succinate oxidation. An alternative possibility is that in wild-type bacteria the cytochrome c is always involved in electron transport, but that its involvement in measurable proton translocation only occurs in carbon-limited conditions.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013386 Succinates Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure. Succinic Acids,Acids, Succinic

Related Publications

C W Keevil, and C Anthony
November 1980, The Biochemical journal,
C W Keevil, and C Anthony
September 1987, Journal of biochemistry,
C W Keevil, and C Anthony
October 1970, The Biochemical journal,
Copied contents to your clipboard!