3D steerable wavelets in practice. 2012

Nicolas Chenouard, and Michael Unser
Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland. nicolas.chenouard@gmail.com

We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008853 Microscopy The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe. Compound Microscopy,Hand-Held Microscopy,Light Microscopy,Optical Microscopy,Simple Microscopy,Hand Held Microscopy,Microscopy, Compound,Microscopy, Hand-Held,Microscopy, Light,Microscopy, Optical,Microscopy, Simple
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D058067 Wavelet Analysis Signal and data processing method that uses decomposition of wavelets to approximate, estimate, or compress signals with finite time and frequency domains. It represents a signal or data in terms of a fast decaying wavelet series from the original prototype wavelet, called the mother wavelet. This mathematical algorithm has been adopted widely in biomedical disciplines for data and signal processing in noise removal and audio/image compression (e.g., EEG and MRI). Spatiotemporal Wavelet Analysis,Wavelet Signal Processing,Wavelet Transform,Analyses, Spatiotemporal Wavelet,Analyses, Wavelet,Analysis, Spatiotemporal Wavelet,Analysis, Wavelet,Processing, Wavelet Signal,Processings, Wavelet Signal,Signal Processing, Wavelet,Signal Processings, Wavelet,Spatiotemporal Wavelet Analyses,Transform, Wavelet,Transforms, Wavelet,Wavelet Analyses,Wavelet Analyses, Spatiotemporal,Wavelet Analysis, Spatiotemporal,Wavelet Signal Processings,Wavelet Transforms
D021621 Imaging, Three-Dimensional The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object. Computer-Assisted Three-Dimensional Imaging,Imaging, Three-Dimensional, Computer Assisted,3-D Image,3-D Imaging,Computer-Generated 3D Imaging,Three-Dimensional Image,Three-Dimensional Imaging, Computer Generated,3 D Image,3 D Imaging,3-D Images,3-D Imagings,3D Imaging, Computer-Generated,3D Imagings, Computer-Generated,Computer Assisted Three Dimensional Imaging,Computer Generated 3D Imaging,Computer-Assisted Three-Dimensional Imagings,Computer-Generated 3D Imagings,Image, 3-D,Image, Three-Dimensional,Images, 3-D,Images, Three-Dimensional,Imaging, 3-D,Imaging, Computer-Assisted Three-Dimensional,Imaging, Computer-Generated 3D,Imaging, Three Dimensional,Imagings, 3-D,Imagings, Computer-Assisted Three-Dimensional,Imagings, Computer-Generated 3D,Imagings, Three-Dimensional,Three Dimensional Image,Three Dimensional Imaging, Computer Generated,Three-Dimensional Images,Three-Dimensional Imaging,Three-Dimensional Imaging, Computer-Assisted,Three-Dimensional Imagings,Three-Dimensional Imagings, Computer-Assisted

Related Publications

Nicolas Chenouard, and Michael Unser
February 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
Nicolas Chenouard, and Michael Unser
February 2014, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
Nicolas Chenouard, and Michael Unser
January 2005, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention,
Nicolas Chenouard, and Michael Unser
January 2006, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention,
Nicolas Chenouard, and Michael Unser
January 2009, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention,
Nicolas Chenouard, and Michael Unser
June 2008, Medical image analysis,
Nicolas Chenouard, and Michael Unser
July 2001, Physical review letters,
Nicolas Chenouard, and Michael Unser
January 2005, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,
Nicolas Chenouard, and Michael Unser
October 2019, Science advances,
Nicolas Chenouard, and Michael Unser
February 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
Copied contents to your clipboard!