Utility of animal models for human embryo culture development: rodents. 2012

Gary D Smith
University of Michigan, Ann Arbor, MI, USA. smithgd@med.umich.edu

Advancements in clinical human embryo culture over the last 30-40 years have been supported by research conducted with embryos from rodent and domestic species. The mouse has been the primary rodent species that has contributed to improved embryo culture outcomes. Numerous parameters applied in the beginning of experiments, during progress of experiments, and as end-point measures provide varying degrees of rigor and interpretive strength and/or complexity. A nonexhaustive discussion of these parameters is presented with important emphasis on experimental design to obtain the greatest power of intraexperimental interpretation of inferior, equivalent, or improved culture conditions in the mouse model. Additionally, data are presented demonstrating the inherent flaw of overinterpretation of interexperimental outcome comparisons and caution of expectations of data translation from the mouse to the human embryo culture scenario. Finally, a materials, methods, and notes discussion enumerates important steps in use of mouse embryos as a bioassay tool, independent of whether they are being used in an experiment focused on quality control or improving culture conditions.

UI MeSH Term Description Entries
D008297 Male Males
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046149 Embryo Culture Techniques The technique of maintaining or growing mammalian EMBRYOS in vitro. This method offers an opportunity to observe EMBRYONIC DEVELOPMENT; METABOLISM; and susceptibility to TERATOGENS. Blastocyst Culture Techniques,Blastocyst Culture Technique,Culture Technique, Blastocyst,Culture Technique, Embryo,Culture Techniques, Blastocyst,Culture Techniques, Embryo,Embryo Culture Technique
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D023421 Models, Animal Non-human animals, selected because of specific characteristics, for use in experimental research, teaching, or testing. Experimental Animal Models,Laboratory Animal Models,Animal Model,Animal Model, Experimental,Animal Model, Laboratory,Animal Models,Animal Models, Experimental,Animal Models, Laboratory,Experimental Animal Model,Laboratory Animal Model,Model, Animal,Model, Experimental Animal,Model, Laboratory Animal,Models, Experimental Animal,Models, Laboratory Animal

Related Publications

Gary D Smith
January 2012, Methods in molecular biology (Clifton, N.J.),
Gary D Smith
January 2012, Methods in molecular biology (Clifton, N.J.),
Gary D Smith
August 2009, Regulatory toxicology and pharmacology : RTP,
Gary D Smith
January 2017, Methods in molecular biology (Clifton, N.J.),
Gary D Smith
August 2004, The British journal of nutrition,
Gary D Smith
August 2009, Molecular nutrition & food research,
Gary D Smith
November 2011, The Journal of infectious diseases,
Gary D Smith
October 2023, Clinical and experimental vaccine research,
Gary D Smith
August 2023, Current opinion in genetics & development,
Copied contents to your clipboard!