Positively charged supported lipid bilayers as a biomimetic platform for neuronal cell culture. 2012

Dzmitry Afanasenkau, and Andreas Offenhäusser
Peter Grünberg Institute/Institute of Complex Systems Bioelectronics (PGI-8/ICS-8), Research Center Juelich, D-52425 Juelich, Germany.

The supported lipid bilayer (SLB) is a well-known system for studying the cell membrane and membrane proteins. It is also promising as a platform for studying cell processes: the cell adhesion, the cell membrane receptors, and the intercellular signaling processes. SLBs made of natural lipids appeared to be protein and cell repellent. Thus, to use the SLB as a substrate for cells, one should functionalize them to provide adhesion. In the present paper, we describe a simple approach to promote adhesion of neuronal cells to the SLB without using proteins or peptides, by introducing positively charged lipids 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) into the SLB made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). We show that neurons adhere to these bilayers and grow for at least 10 days. The SLBs themselves were found to degrade with time in cell culture conditions, but maintained fluidity (as revealed by fluorescence recovery after photobleaching), demonstrating the possibility of using SLBs for studying neuronal cells in culture.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005229 Fatty Acids, Monounsaturated Fatty acids which are unsaturated in only one position. Monounsaturated Fatty Acid,Acid, Monounsaturated Fatty,Acids, Monounsaturated Fatty,Fatty Acid, Monounsaturated,Monounsaturated Fatty Acids
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Dzmitry Afanasenkau, and Andreas Offenhäusser
June 2016, Biointerphases,
Dzmitry Afanasenkau, and Andreas Offenhäusser
October 2022, RSC advances,
Dzmitry Afanasenkau, and Andreas Offenhäusser
May 2009, Langmuir : the ACS journal of surfaces and colloids,
Dzmitry Afanasenkau, and Andreas Offenhäusser
December 2019, Nano letters,
Dzmitry Afanasenkau, and Andreas Offenhäusser
May 2010, Biomacromolecules,
Dzmitry Afanasenkau, and Andreas Offenhäusser
June 2019, Langmuir : the ACS journal of surfaces and colloids,
Dzmitry Afanasenkau, and Andreas Offenhäusser
August 2014, The European physical journal. E, Soft matter,
Dzmitry Afanasenkau, and Andreas Offenhäusser
May 2023, Entropy (Basel, Switzerland),
Dzmitry Afanasenkau, and Andreas Offenhäusser
October 2013, Current opinion in colloid & interface science,
Copied contents to your clipboard!