Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells. 2013

K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.

OBJECTIVE Hyper-nociceptive PGE(2) EP(4) receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other G(s) -protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone-glial cell interactions in regulating adenylyl cyclase (AC) activity. METHODS Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. RESULTS Pharmacological analysis showed the presence of G(s) -coupled β(2) -adrenoceptors and CGRP receptors, but not β(1) -adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell-cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. CONCLUSIONS G(s) -coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP(4) and IP receptors, but not β(2) -adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses.

UI MeSH Term Description Entries
D008297 Male Males
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D044006 Receptors, Epoprostenol Cell surface receptors for EPOPROSTENOL. They are coupled to HETEROTRIMERIC G-PROTEINS. PGI2 Receptor,Prostacyclin Receptor,Receptors, Prostacyclin,PGI2 Receptors,Prostaglandin I2 Receptors,Prostaglandins X Receptors,Receptor, Prostaglandin I2,Epoprostenol Receptors,Prostacyclin Receptors,Prostaglandin I2 Receptor,Receptor, PGI2,Receptor, Prostacyclin,Receptors, PGI2,Receptors, Prostaglandin I2,Receptors, Prostaglandins X
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
April 2004, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
October 2014, Neuroscience,
K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
May 1993, Biochemical Society transactions,
K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
February 1993, The Journal of physiology,
K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
January 2011, Neuroscience letters,
K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
May 1997, Neuroscience letters,
K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
January 2019, Neuroscience letters,
K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
August 1986, The Journal of physiology,
K Y Ng, and B H S Yeung, and Y H Wong, and H Wise
December 2023, Journal of applied biomedicine,
Copied contents to your clipboard!