High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. 1990

P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
Department of Human Genetics, Yale University School of Medicine, New Haven, CT 06510.

Cosmid clones containing human DNA inserts have been mapped on chromosome 11 by fluorescence in situ hybridization under conditions that suppress signal from repetitive DNA sequences. Thirteen known genes, one chromosome 11-specific DNA repeat, and 36 random clones were analyzed. High-resolution mapping was facilitated by using digital imaging microscopy and by analyzing extended (prometaphase) chromosomes. The map coordinates established by in situ hybridization showed a one to one correspondence with those determined by Southern (DNA) blot analysis of hybrid cell lines containing fragments of chromosome 11. Furthermore, by hybridizing three or more cosmids simultaneously, gene order on the chromosome could be established unequivocally. These results demonstrate the feasibility of rapidly producing high-resolution maps of human chromosomes by in situ hybridization.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002880 Chromosomes, Human, Pair 11 A specific pair of GROUP C CHROMOSOMES of the human chromosome classification. Chromosome 11
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
February 1994, Genomics,
P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
October 1992, Genomics,
P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
April 1996, Genome research,
P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
January 1994, Mammalian genome : official journal of the International Mammalian Genome Society,
P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
July 1993, Genomics,
P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
September 1996, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
January 1995, Cytogenetics and cell genetics,
P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
July 1989, Nucleic acids research,
P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
July 1990, Genomics,
P Lichter, and C J Tang, and K Call, and G Hermanson, and G A Evans, and D Housman, and D C Ward
September 1992, Genomics,
Copied contents to your clipboard!