Effects of trypsin, thrombin and proteinase-activated receptors on guinea pig common bile duct motility. 2012

Shih-Che Huang
Department of Internal Medicine, E-Da Hospital, and School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824, Taiwan. shihchehuang@hotmail.com

Trypsin and thrombin activate proteinase-activated receptors (PARs), which modulate gastrointestinal motility. The common bile duct is exposed to many proteinases that can activate PARs, especially during infection and stone obstruction. We investigated PAR effects on common bile duct motility in vitro. Contraction and relaxation of isolated guinea pig common bile duct strips caused by PAR(1), PAR(2) and PAR(4) agonists were measured using isometric transducers. Reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of PAR(1) and PAR(2). Thrombin and two PAR(1) peptide agonists, TFLLR-NH(2) and SFLLRN-NH(2), evoked moderate relaxation of the carbachol-contracted common bile duct in a concentration-dependent manner. Trypsin and three PAR(2) peptide agonists, 2-furoyl-LIGRLO-NH(2), SLIGKV-NH(2) and SLIGRL-NH(2), generated moderate to marked relaxation as well. The existence of PAR(1) and PAR(2) mRNA in the common bile duct was identified by RT-PCR. Moreover, two PAR(4)-selective agonists, AYPGKF-NH(2) and GYPGQV-NH(2), produced relaxation of the common bile duct. In contrast, all PAR(1), PAR(2) and PAR(4) inactive control peptides did not elicit relaxation. This indicates that PAR(1), PAR(2) and PAR(4) mediate common bile duct relaxation. The thrombin, TFLLR-NH(2), trypsin, and AYPGKF-NH(2)-induced responses were not affected by tetrodotoxin, implying that the PAR effects are not neurally mediated. Our findings provide the first evidence that PAR(1) and PAR(2) mediate whereas agonists of PAR(4) elicit relaxation of the guinea pig common bile duct. Trypsin and thrombin relax the common bile duct. PARs may play an important role in the control of common bile duct motility.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D003135 Common Bile Duct The largest bile duct. It is formed by the junction of the CYSTIC DUCT and the COMMON HEPATIC DUCT. Choledochus,Bile Duct, Common,Common Bile Ducts,Duct, Common Bile
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005769 Gastrointestinal Motility The motor activity of the GASTROINTESTINAL TRACT. Intestinal Motility,Gastrointestinal Motilities,Intestinal Motilities,Motilities, Gastrointestinal,Motilities, Intestinal,Motility, Gastrointestinal,Motility, Intestinal
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Shih-Che Huang
January 1991, Archives internationales de pharmacodynamie et de therapie,
Shih-Che Huang
July 1991, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!