Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. 1990

J P Lees-Miller, and L O Goodwin, and D M Helfman
Cold Spring Harbor Laboratory, New York 11724.

cDNA clones encoding three novel tropomyosins, termed TMBr-1, TMBr-2, and TMBr-3, were isolated and characterized from a rat brain cDNA library. All are derived from a single gene, which was previously found to express striated muscle alpha-tropomyosin and a number of other tropomyosin isoforms via an alternative splicing mechanism (N. Ruiz-Opazo and B. Nadal-Ginard, J. Biol. Chem. 262:4755-4765, 1987; D. F. Wieczorek, C. W. J. Smith, and B. Nadal-Ginard, Mol. Cell. Biol. 8:679-694, 1988). The derived amino acid sequences revealed that TMBr-1 contains 281 amino acids, TMBr-2 contains 251 amino acids, and TMBr-3 contains 245 amino acids. All three proteins contain a region that is identical to amino acids 81 through 258 of skeletal muscle alpha-tropomyosin. TMBr-1 is identical to striated muscle alpha-tropomyosin from amino acids 1 through 258 but contains a novel COOH-terminal region from amino acids 259 through 281. TMBr-2 and TMBr-3 both contain identical NH2-terminal sequences from amino acids 1 through 44 which were found to be expressed from a novel promoter. TMBr-3 contains the same COOH-terminal region as TMBr-1, whereas TMBr-2 contains a second novel COOH-terminal region. The genomic organization of the exons encoding TMBr-1, TMBr-2, and TMBr-3 were determined. These studies revealed a previously uncharacterized promoter located in the internal region of the alpha-TM gene as well as two novel COOH-terminal coding exons. The alpha-TM gene is a complex transcription unit containing 15 exons including two alternative promoters, two internal mutually exclusive exon cassettes, and four alternatively spliced 3' exons that encode four different COOH-terminal coding regions. A total of nine distinct mRNAs are known to be expressed from the alpha-TM gene in a cell type-specific manner in tissues such as striated muscle, smooth muscle, kidney, liver, brain, and fibroblasts. The mRNAs encoding TMBr-1, TMBr-2, and TMBr-3 were found to be expressed only in brain tissue, with TMBr-3 being expressed at much greater levels than TMBr-1 and TMBr-2. The individual structural characteristics of each brain alpha-tropomyosin isoform and their possible functions are discussed.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J P Lees-Miller, and L O Goodwin, and D M Helfman
November 1986, Molecular and cellular biology,
J P Lees-Miller, and L O Goodwin, and D M Helfman
February 1992, Journal of muscle research and cell motility,
J P Lees-Miller, and L O Goodwin, and D M Helfman
February 2005, Gene,
J P Lees-Miller, and L O Goodwin, and D M Helfman
December 1998, Molecular endocrinology (Baltimore, Md.),
J P Lees-Miller, and L O Goodwin, and D M Helfman
May 2000, Journal of neurochemistry,
J P Lees-Miller, and L O Goodwin, and D M Helfman
May 2002, Gene,
J P Lees-Miller, and L O Goodwin, and D M Helfman
November 1987, The Journal of biological chemistry,
J P Lees-Miller, and L O Goodwin, and D M Helfman
January 1998, Gene,
J P Lees-Miller, and L O Goodwin, and D M Helfman
October 2000, Journal of neurochemistry,
Copied contents to your clipboard!