Age-dependent covalent DNA alterations (I-compounds) in rat liver mitochondrial DNA. 1990

K P Gupta, and K L van Golen, and E Randerath, and K Randerath
Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030.

Rat liver mitochondrial (mt) DNA was investigated for the presence of I-compounds, a recently discovered type of DNA modifications which is detected and measured via 32P-postlabeling. These DNA modifications were previously shown to accumulate in an age-dependent manner in total cellular DNA of various tissues of untreated rodents. In the present work, mt DNA of 1-, 3-, 6-, and 9-month-old female Sprague-Dawley rats was found by 32P-postlabeling also to contain I-compounds that increase with age. Most of the I-compounds were identical for mt and nuclear (nu) DNA. A cluster of 2 non-polar I-spots (termed M-compounds) was mitochondria-specific and increased about 8-fold from 1 to 9 months, attaining a RAL value of 44 X 10(-9) or 1 modification in 2.3 X 10(7) DNA nucleotides at 9 months. Quantitative differences between chromatographically identical spots were seen mainly for a low-polarity fraction of I-compounds, which exhibited 2 times higher overall levels in mt DNA versus nu DNA over the age range studied. Total I-compound levels increased during this time 6.9- and 5.1-fold in nuclei and mitochondria, respectively. The M-compound level was close to 10% of total mt DNA I-compound levels. M-compounds may conceivably be derived from potentially DNA-reactive electron carriers of the mt electron-transport chain, while I-compounds common to both mt and nu DNA presumably originate in extramitochondrial sources. The similarity of mitochondrial and nuclear I-compound profiles and amounts implies possible regulatory mechanisms in I-compound formation and repair. Mt DNA maps showed additional 32P-labeled material which may have been associated with DNA damage caused by oxygen free radicals known to be generated by the mt electron-transport chain. Age-dependent increases of mt DNA modifications are potentially related to mt mutations and may be linked to age-related degenerative changes in mitochondria.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009710 Nucleotide Mapping Two-dimensional separation and analysis of nucleotides. Fingerprints, Nucleotide,Fingerprint, Nucleotide,Mapping, Nucleotide,Mappings, Nucleotide,Nucleotide Fingerprint,Nucleotide Fingerprints,Nucleotide Mappings
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

K P Gupta, and K L van Golen, and E Randerath, and K Randerath
March 1989, Mutation research,
K P Gupta, and K L van Golen, and E Randerath, and K Randerath
January 1993, Mutation research,
K P Gupta, and K L van Golen, and E Randerath, and K Randerath
April 1982, Biochemical and biophysical research communications,
K P Gupta, and K L van Golen, and E Randerath, and K Randerath
March 1992, Biochemistry international,
K P Gupta, and K L van Golen, and E Randerath, and K Randerath
December 1992, Annals of the New York Academy of Sciences,
K P Gupta, and K L van Golen, and E Randerath, and K Randerath
March 1995, Chemico-biological interactions,
K P Gupta, and K L van Golen, and E Randerath, and K Randerath
January 1992, Nutrition and cancer,
K P Gupta, and K L van Golen, and E Randerath, and K Randerath
May 2023, Biomedicines,
K P Gupta, and K L van Golen, and E Randerath, and K Randerath
July 1990, Cancer research,
K P Gupta, and K L van Golen, and E Randerath, and K Randerath
October 1984, Mechanisms of ageing and development,
Copied contents to your clipboard!