Age-dependent alterations in the physicochemical properties of rat liver microsomes. 1984

D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney

Aging results in a significant decline in liver drug metabolism which is largely attributable to changes in the microsomal mixed function oxidase system. For example, the mixed function oxidase system in the livers of senescent rats is characterized by: (1) a reduced cytochrome P-450 content; (2) a decline in the specific activity of NADPH-cytochrome c (P-450) reductase; and (3) a slower rate of ethylmorphine N-demethylation in comparison to young adult animals. Since several factors intrinsic to the microsomes may influence the efficacy of the mixed function oxidase system, e.g. the phospholipid and cholesterol contents, the saturation index of the fatty acids and the fluidity of the membranes, we conducted a physicochemical analysis of liver microsomes isolated from young adult (3-4 months), mature (12-16 months) and senescent (25-27 months) male Fischer rats. Although the microsomal cholesterol content did not change appreciably between maturity and senescence, there was a marked decline in the total phospholipid content. This resulted in a significant increase in the cholesterol/phospholipid ratio, 0.49 to 0.65 between 16 and 27 months of age. The age-related changes in the total phospholipid content were largely reflected in each of the major fractions, i.e. phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine + phosphatidylserine. Small increases in the relative percentages of highly unsaturated fatty acid species were offset by similar decreases in the more frequent and more saturated species as a function of increased age. As a result, the net change in the fatty acid saturation index was probably minimal. However, the increase in the cholesterol/phospholipid ratio most likely contributes to the significant decline in the order parameter of microsomes isolated from old rats which, in turn, may impair the functional capacity of the hepatic mixed function oxidase system.

UI MeSH Term Description Entries
D008297 Male Males
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
April 1962, The Journal of biological chemistry,
D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
January 1982, Ukrainskii biokhimicheskii zhurnal (1978),
D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
May 1978, Biochemical and biophysical research communications,
D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
January 1990, Mutation research,
D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
January 1978, Experimental gerontology,
D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
May 1976, Journal of steroid biochemistry,
D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
June 1975, The Journal of biological chemistry,
D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
August 1983, Journal of pharmacobio-dynamics,
D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
December 1987, Archives of biochemistry and biophysics,
D L Schmucker, and D A Vessey, and R K Wang, and J L James, and A Maloney
July 1992, Biochemical and biophysical research communications,
Copied contents to your clipboard!