Synaptic vesicle proteins: targets and routes for botulinum neurotoxins. 2013

Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
AG Functional Cell Biology, Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin, Philippstr 12, 10115 Berlin, Germany. gudrun.ahnert@charite.de

Synaptic vesicles (SV) are key organelles of neuronal communication. SV are responsible for the storage of neurotransmitters, which are released by Ca(2+)-dependent exocytosis. After release and interaction with postsynaptic receptors, transmitters rapidly diffuse out of the synaptic cleft and are sequestered by plasma membrane transporters (in some cases following enzymatic conversion). SVs undergo endocytosis and are refilled by specific vesicular transmitter transporters different in the various neuronal subtypes. Besides these differences, SVs in general are equipped with a remarkable common set of proteins. Botulinum neurotoxins (BoNTs) inhibit neurotransmitter release from almost all types of neurons by cleaving proteins required for membrane fusion localized either to SVs (synaptobrevin) or to the plasma membrane (SNAP-25 and syntaxin) depending on the BoNT serotype. To enter the neuronal cytoplasm, BoNTs specifically interact with the luminal domain of SV proteins (synaptotagmin or SV2, depending on serotype) transiently exposed during exocytotic membrane fusion and occurring in almost every neuron. Thus, the highly specific interaction with luminal domains of SV proteins commonly expressed on all SV types is one reason why BoNTs exhibit such a high neuronal specificity but attack almost every neuron type.

UI MeSH Term Description Entries
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D001905 Botulinum Toxins Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS. Botulin,Botulinum Neurotoxin,Botulinum Neurotoxins,Clostridium botulinum Toxins,Botulinum Toxin,Neurotoxin, Botulinum,Neurotoxins, Botulinum,Toxin, Botulinum,Toxins, Botulinum,Toxins, Clostridium botulinum
D001906 Botulism A disease caused by potent protein NEUROTOXINS produced by CLOSTRIDIUM BOTULINUM which interfere with the presynaptic release of ACETYLCHOLINE at the NEUROMUSCULAR JUNCTION. Clinical features include abdominal pain, vomiting, acute PARALYSIS (including respiratory paralysis), blurred vision, and DIPLOPIA. Botulism may be classified into several subtypes (e.g., food-borne, infant, wound, and others). (From Adams et al., Principles of Neurology, 6th ed, p1208) Botulism, Infantile,Botulism, Toxico-Infectious,Clostridium botulinum Infection,Foodborne Botulism,Infant Botulism,Toxico-Infectious Botulism,Wound Botulism,Botulism, Foodborne,Botulism, Infant,Botulism, Toxico Infectious,Botulism, Wound,Clostridium botulinum Infections,Foodborne Botulisms,Infant Botulisms,Infantile Botulism,Infection, Clostridium botulinum,Toxico Infectious Botulism,Wound Botulisms
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003014 Clostridium botulinum A species of anaerobic, gram-positive, rod-shaped bacteria in the family Clostridiaceae that produces proteins with characteristic neurotoxicity. It is the etiologic agent of BOTULISM in humans, wild fowl, HORSES; and CATTLE. Seven subtypes (sometimes called antigenic types, or strains) exist, each producing a different botulinum toxin (BOTULINUM TOXINS). The organism and its spores are widely distributed in nature.

Related Publications

Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
August 2008, Cellular and molecular life sciences : CMLS,
Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
November 2005, The Biochemical journal,
Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
October 2009, Toxicon : official journal of the International Society on Toxinology,
Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
January 2015, PloS one,
Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
June 1997, FEBS letters,
Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
November 1992, The Journal of biological chemistry,
Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
September 1999, Current biology : CB,
Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
August 1996, The Journal of biological chemistry,
Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
January 1995, Neuroscience,
Gudrun Ahnert-Hilger, and Agnieszka Münster-Wandowski, and Markus Höltje
August 2019, Journal of neural transmission (Vienna, Austria : 1996),
Copied contents to your clipboard!