The synaptic vesicle and its targets. 1995

W Volknandt
Zoologisches Institut, J. W. Goethe-Universität, Frankfurt/M., Germany.

Synaptic vesicles play the central role in synaptic transmission. They are regarded as key organelles involved in synaptic functions such as uptake, storage and stimulus-dependent release of neurotransmitter. In the last few years our knowledge concerning the molecular components involved in the functioning of synaptic vesicles has grown impressively. Combined biochemical and molecular genetic approaches characterize many constituents of synaptic vesicles in molecular detail and contribute to an elaborate understanding of the organelle responsible for fast neuronal signalling. By studying synaptic vesicles from the electric organ of electric rays and from the mammalian cerebral cortex several proteins have been characterized as functional carriers of vesicle function, including proteins involved in the molecular cascade of exocytosis. The synaptic vesicle specific proteins, their presumptive function and targets of synaptic vesicle proteins will be discussed. This paper focuses on the small synaptic vesicles responsible for fast neuronal transmission. Comparing synaptic vesicles from the peripheral and central nervous systems strengthens the view of a high conservation in the overall composition of synaptic vesicles with a unique set of proteins attributed to this cellular compartment. Synaptic vesicle proteins belong to gene families encoding multiple isoforms present in subpopulations of neurons. The overall architecture of synaptic vesicle proteins is highly conserved during evolution and homologues of these proteins govern the constitutive secretion in yeast. Neurotoxins from different sources helped to identify target proteins of synaptic vesicles and to elucidate the molecular machinery of docking and fusion. Synaptic vesicle proteins and their markers are useful tools for the understanding of the complex life cycle of synaptic vesicles.

UI MeSH Term Description Entries
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

W Volknandt
September 2017, Clinica chimica acta; international journal of clinical chemistry,
W Volknandt
February 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry,
W Volknandt
January 2013, Current topics in microbiology and immunology,
W Volknandt
January 2004, Annual review of neuroscience,
W Volknandt
January 1998, Annual review of physiology,
W Volknandt
October 1987, The Biochemical journal,
W Volknandt
January 1999, Annual review of cell and developmental biology,
Copied contents to your clipboard!