Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification. 2013

Nan-Nan Bu, and Ai Gao, and Xi-Wen He, and Xue-Bo Yin
State Key Laboratory of Medicinal Chemical Biology and Key Laboratory of Functional Polymer Material (MOE), College of Chemistry, Nankai University, Tianjin, 300071, PR China.

Restricted target accessibility and surface-induced perturbation of the aptamer structure are the main limitations in single-stranded DNA aptamer-based electrochemical sensors. Chemical labeling of the aptamer with a probe at the end of aptamer is inefficient and time-consuming. In this work, tetrahedron-structured DNA (ts-DNA) and a functionalized oligonucleotide (FO) were used to develop an electrochemiluminescence (ECL) aptasensor with adenosine triphosphate (ATP) as a model target. The ts-DNA was formed with three thiolated oligonucleotides and one oligonucleotide containing anti-ATP aptamer. The FO contained a complementary strand to the anti-ATP aptamer and an intermolecular duplex for Ru(phen)3(2+) intercalation. After the ts-DNA was immobilized on the electrode surface through gold-thiol interactions, hybridization between the anti-ATP aptamer and its complementary strand introduced the intercalated Ru(phen)3(2+) to the electrode. ECL emission from Ru(phen)3(2+) was observed with tripropylamine as a co-reactant. Once ATP reacted with its aptamer, the aptamer-complimentary strand duplex dissociated and the intermolecular duplex containing Ru(phen)3(2+) was released. The difference in emission before and after reaction with ATP was used to quantify ATP with a detection limit of 0.2nM. The ts-DNA increased the sensitivity compared to conventional methods, and the intercalation strategy avoided a complex chemical labeling procedure.

UI MeSH Term Description Entries
D007364 Intercalating Agents Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA. Intercalating Agent,Intercalating Ligand,Intercalative Compound,Intercalator,Intercalators,Intercalating Ligands,Intercalative Compounds,Agent, Intercalating,Agents, Intercalating,Compound, Intercalative,Compounds, Intercalative,Ligand, Intercalating,Ligands, Intercalating
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D003217 Conductometry Determination of the quantity of a material present in a mixture by measurement of its effect on the electrical conductivity of the mixture. (Webster, 3d ed) Titration, Conductometric,Conductometric Titration,Conductometric Titrations,Titrations, Conductometric
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D012413 Rubidium An element that is an alkali metal. It has an atomic symbol Rb, atomic number 37, and atomic weight 85.47. It is used as a chemical reagent and in the manufacture of photoelectric cells.
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D019544 Equipment Failure Analysis The evaluation of incidents involving the loss of function of a device. These evaluations are used for a variety of purposes such as to determine the failure rates, the causes of failures, costs of failures, and the reliability and maintainability of devices. Materials Failure Analysis,Prosthesis Failure Analysis,Analysis, Equipment Failure,Analysis, Materials Failure,Analysis, Prosthesis Failure,Analyses, Equipment Failure,Analyses, Materials Failure,Analyses, Prosthesis Failure,Equipment Failure Analyses,Failure Analyses, Equipment,Failure Analyses, Materials,Failure Analyses, Prosthesis,Failure Analysis, Equipment,Failure Analysis, Materials,Failure Analysis, Prosthesis,Materials Failure Analyses,Prosthesis Failure Analyses

Related Publications

Nan-Nan Bu, and Ai Gao, and Xi-Wen He, and Xue-Bo Yin
July 2011, Chemical communications (Cambridge, England),
Nan-Nan Bu, and Ai Gao, and Xi-Wen He, and Xue-Bo Yin
December 2010, Chemical communications (Cambridge, England),
Nan-Nan Bu, and Ai Gao, and Xi-Wen He, and Xue-Bo Yin
January 2021, Physical chemistry chemical physics : PCCP,
Nan-Nan Bu, and Ai Gao, and Xi-Wen He, and Xue-Bo Yin
January 2000, Luminescence : the journal of biological and chemical luminescence,
Nan-Nan Bu, and Ai Gao, and Xi-Wen He, and Xue-Bo Yin
April 2022, Talanta,
Nan-Nan Bu, and Ai Gao, and Xi-Wen He, and Xue-Bo Yin
December 1992, Molecular and cellular probes,
Copied contents to your clipboard!