The hok mRNA family. 2012

Adi Steif, and Irmtraud M Meyer
Centre for High-Throughput Biology and Department of Computer Science, University of British Columbia, Vancouver, BC Canada.

The hok/sok toxin-antitoxin system of Escherichia coli plasmid R1 increases plasmid maintenance by killing plasmid-free daughter cells. The hok/sok locus specifies two RNAs: hok mRNA, which encodes a toxic transmembrane protein, and sok antisense RNA, which binds a complementary region in the hok mRNA and induces transcript degradation. During cell growth, the cis-encoded sok RNA inhibits expression of the Hok toxin. In plasmid-free segregants, the rapid decay of sok RNA relative to hok mRNA permits Hok translation, leading to cell death. This post-segregational killing mechanism relies upon the ability of the hok mRNA to adopt alternative structural configurations, which affect ease of translation and the susceptibility of the molecule to degradation. The full-length hok transcript is stable, highly structured and immune to ribosome and antisense RNA binding. Gradual 3' end processing produces dramatic structural rearrangements in the mRNA, which render the molecule translationally active and expose the sok RNA binding site. During transcription, premature ribosome and sok binding are prevented through the formation of transient metastable hairpins in the 5' end of the nascent transcript. Several hok mRNA paralogs have been identified in the genome of E. coli, and Hok protein orthologs found in the genomes of Enterobacteria. Using a combination of automated search and extensive manual editing, we compiled a multiple sequence alignment for the hok mRNA. All three experimentally validated hok mRNA structures are mapped onto this alignment, which has been submitted to the Rfam database for RNA families.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

Adi Steif, and Irmtraud M Meyer
November 1990, The New biologist,
Adi Steif, and Irmtraud M Meyer
November 1999, RNA (New York, N.Y.),
Adi Steif, and Irmtraud M Meyer
June 1999, Molecular microbiology,
Adi Steif, and Irmtraud M Meyer
October 1994, Biotechnology and bioengineering,
Copied contents to your clipboard!