Metastable structures and refolding kinetics in hok mRNA of plasmid R1. 1999

J H Nagel, and A P Gultyaev, and K Gerdes, and C W Pleij
Leiden Institute of Chemistry, Gorlaeus Laboratories, The Netherlands.

Programmed cell death by hok/sok of plasmid R1 and pnd/pndB of R483 mediates plasmid maintenance by killing of plasmid-free cells. It has been previously suggested that premature translation of the plasmid-mediated toxin is prevented during transcription of the hok and pnd mRNAs by the formation of metastable hairpins in the mRNA at the 5' end. Here, experimental evidence is presented for the existence of metastable structures in the 5' leader of the hok and pnd mRNAs in vitro. The kinetics of refolding from the metastable to the stable structure in the isolated fragments of the 5' ends of both the hok and pnd mRNAs could be estimated, in agreement with the structural rearrangement in this region, as predicted to occur during transcription and mRNA activation. The refolding rates of hok and pnd structures are slow enough to allow for the formation of downstream hairpin structures during elongation of the mRNAs, which thereby helps to stabilize the metastable structures. Thus, the kinetic refolding parameters of the hok and pnd mRNAs are consistent with the proposal that the metastable structures prevent premature translation and/or antisense RNA binding during transcription.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D009695 Nucleic Acid Renaturation The reformation of all, or part of, the native conformation of a nucleic acid molecule after the molecule has undergone denaturation. Acid Renaturation, Nucleic,Acid Renaturations, Nucleic,Nucleic Acid Renaturations,Renaturation, Nucleic Acid,Renaturations, Nucleic Acid
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

J H Nagel, and A P Gultyaev, and K Gerdes, and C W Pleij
April 1996, Journal of bacteriology,
J H Nagel, and A P Gultyaev, and K Gerdes, and C W Pleij
December 2012, RNA biology,
J H Nagel, and A P Gultyaev, and K Gerdes, and C W Pleij
February 1989, Nucleic acids research,
J H Nagel, and A P Gultyaev, and K Gerdes, and C W Pleij
March 1996, Molecular & general genetics : MGG,
J H Nagel, and A P Gultyaev, and K Gerdes, and C W Pleij
September 1980, Plasmid,
Copied contents to your clipboard!