Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. 1975

K Jacobson, and D Papahadjopoulos

Differential scanning calorimetry (DSC) and fluorescence polarization of embedded probe molecules were used to detect phase behavior of various phospholipids. The techniques were directly compared for detecting the transition of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidic acid (DPPA) dispersed in aqueous salt solutions. Excellent agreement occurred in the case of phosphatidylcholine; however, in the case of phosphatidic acid, at pH 6.5, transitions detected by fluorescence polarization using the disc-like perylene molecule occurred about 10 degrees lower than those detected by DSC. Discrepancy between fluorescence and DSC methods is eliminated by using a rod-like molecule, diphenylhexatriene (DPH). Both techniques show that doubly ionizing the phosphate group reduces the Tc by about 9 degrees. Direct pH titration of fluidity can be accomplished and this effect is most dramatic when membranes are in their transition temperature range (ca. 50 degrees). Phosphatidic acid transitions occur at higher temperatures, and have appreciably lower transition enthalpies and entropies than phosphatidylcholine. These effect could not be explained simply on the basis of double layer electrostatics and several other factors were discussed in an attempt to rationalize the results. Addition of monovalent cations (0.01-0.5 M) is shown to increase the Tc of dipalmitoylphosphatidylglycerol by less than 3 degrees. However, addition of (1 x 10-3 M) Ca2+ abolishes the phase transition of both phosphatidyglycerol and phosphatidylserine in the range 0-70 degrees. Preliminary X-ray evidence indicates the phosphatidylserine-Ca2+ bilayers are in a crystalline state at 24 degrees. In contrast, 5 x 10-3 M Mg2+ only broadens the transition and increases the Tc indicating a considerable difference between the effects of Ca2+ and Mg2+. Neutralization of PS increases the Tc from 6 degrees (at pH 7.4) to 20-26 degrees (at pH 2.5-3.0) but does not abolish the transition, suggesting the Ca2+ effect involves more than charge neutralization. Addition of Ca2+ to mixed phosphatidylserine-phosphatidylcholine dispersions, induces a phase separation of the dipalmitoyl- (and also distearoyl-) phosphatidylcholine as seen by the appearance of a new endothermic peak at 41 degrees (58 degrees). Similarly, in mixed (dipalmitoyl) phosphatidic acid-phosphatidylcholine (2:1) dispersions, Ca2+ again can separate the phosphatidylcholine component.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

K Jacobson, and D Papahadjopoulos
January 1986, Chemistry and physics of lipids,
K Jacobson, and D Papahadjopoulos
December 2016, Nanoscale research letters,
K Jacobson, and D Papahadjopoulos
January 1978, Biochimica et biophysica acta,
K Jacobson, and D Papahadjopoulos
December 1988, Biochimica et biophysica acta,
K Jacobson, and D Papahadjopoulos
March 1991, Chemistry and physics of lipids,
K Jacobson, and D Papahadjopoulos
June 1971, The Journal of biological chemistry,
K Jacobson, and D Papahadjopoulos
February 1974, Biochemistry,
Copied contents to your clipboard!