Cholesterol affects divalent cation-induced fusion and isothermal phase transitions of phospholipid membranes. 1988

S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
Cancer Research Institute, School of Medicine, University of California, San Francisco 94143.

The influence of cholesterol on divalent cation-induced fusion and isothermal phase transitions of large unilamellar vesicles composed of phosphatidylserine (PS) was investigated. Vesicle fusion was monitored by the terbium/dipicolinic acid assay for the intermixing of internal aqueous contents, in the temperature range 10-40 degrees C. The fusogenic activity of the cations decreases in the sequence Ca2+ greater than Ba2+ greater than Sr2+ much greater than Mg2+ for cholesterol concentrations in the range 20-40 mol%, and at all temperatures. Increasing the cholesterol concentration decreases the initial rate of fusion in the presence of Ca2+ and Ba2+ at 25 degrees C, reaching about 50% of the rate for pure PS at a mole fraction of 0.4. From 10 to 25 degrees C, Mg2+ is ineffective in causing fusion at all cholesterol concentrations. However, at 30 degrees C, Mg2+-induced fusion is observed with vesicles containing cholesterol. At 40 degrees C, Mg2+ induces slow fusion of pure PS vesicles, which is enhanced by the presence of cholesterol. Increasing the temperature also causes a monotonic increase in the rate of fusion induced by Ca2+, Ba2+ and Sr2+. The enhancement of the effect of cholesterol at high temperatures suggests that changes in hydrogen bonding and interbilayer hydration forces may be involved in the modulation of fusion by cholesterol. The phase behavior of PS/cholesterol membranes in the presence of Na+ and divalent cations was studied by differential scanning calorimetry. The temperature of the gel-liquid crystalline transition (Tm) in Na+ is lowered as the cholesterol content is increased, and the endotherm is broadened. Addition of divalent cations shifts the Tm upward, with a sequence of effectiveness Ba2+ greater than Sr2+ greater than Mg2+. The Tm of these complexes decreases as the cholesterol content is increased. Although the transition is not detectable for cholesterol concentrations of 40 and 50 mol% in the presence of Na+, Sr2+ or Mg2+, the addition of Ba2+ reveals endotherms with Tm progressively lower than that observed at 30 mol%. Although the presence of cholesterol appears to induce an isothermal gel-liquid crystalline transition by decreasing the Tm, this change in membrane fluidity does not enhance the rate of fusion, but rather decreases it. The effect of cholesterol on the fusion of PS/phosphatidylethanolamine (PE) vesicles was investigated by utilizing a resonance energy transfer assay for lipid mixing. The initial rate of fusion of PS/PE and PS/PE/cholesterol vesicles is saturated at high Mg2+ concentrations. With Ca2+, saturation is not observed for cholesterol-containing vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries

Related Publications

S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
April 1979, Biochimica et biophysica acta,
S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
August 1982, Proceedings of the National Academy of Sciences of the United States of America,
S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
October 1976, The Journal of membrane biology,
S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
August 2003, Physical review letters,
S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
September 1975, Biophysical journal,
S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
October 1984, Biophysical journal,
S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
January 1979, Membrane biochemistry,
S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
January 1978, Biochimica et biophysica acta,
S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
February 1990, Chemistry and physics of lipids,
S A Shavnin, and M C Pedroso de Lima, and J Fedor, and P Wood, and J Bentz, and N Düzgüneş
November 1981, Biophysical journal,
Copied contents to your clipboard!