Fusion of negatively charged phospholipid vesicles by alpha-latrotoxin. 1990

V K Lishko, and Terletskaya YaT, and I O Trikash
Department of Neurochemistry, A.V. Palladin Institute of Biochemistry, Academy of Sciences, Ukrainian SSR, Kiev.

alpha-Latrotoxin-induced fusion of liposomes has been described using large unilamellar vesicles composed of phosphatidylcholine/phosphatidylethanolamine/cardiolipin at a molar ratio of 2:3:5. Vesicle fusion was monitored by terbium/dipicolinic acid assay as well as by fluorescence energy transfer measurement. The enhancement of the fusogenic effect of LTX by low concentrations (0.1-3 mM) of CaCl2 has been demonstrated. The efficiency of other divalent cations on the LTX fusogenic activity was shown to decrease in the sequence Ca greater than Cd greater than Sr greater than Mg greater than Ba. LTX-induced fusion was accompanied by the increase of vesicle size measured by laser correlation spectroscopy. It is concluded that fusogenic action of LTX may be involved in its effect on synaptic apparatus.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D001180 Arthropod Venoms Venoms from animals of the phylum ARTHROPODA. Those most investigated are from SCORPIONS and SPIDERS of the class Arachnidae and from ant, bee, and wasp families of the INSECTA order HYMENOPTERA. The venoms contain protein toxins, enzymes, and other bioactive substances and may be lethal to man. Arachnid Toxin,Arachnid Toxins,Arachnid Venoms,Hymenoptera Venom,Hymenoptera Venoms,Insect Venom,Insect Venoms,Arachnid Venom,Arthropod Venom,Toxin, Arachnid,Toxins, Arachnid,Venom, Arachnid,Venom, Arthropod,Venom, Hymenoptera,Venom, Insect,Venoms, Arachnid,Venoms, Arthropod,Venoms, Hymenoptera,Venoms, Insect
D013111 Spider Venoms Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL. Araneid Venoms,Spider Toxin,Spider Toxins,Tarantula Toxin,Tarantula Toxins,Tarantula Venom,Araneid Venom,Spider Venom,Tarantula Venoms,Toxin, Spider,Toxin, Tarantula,Toxins, Spider,Toxins, Tarantula,Venom, Araneid,Venom, Spider,Venom, Tarantula,Venoms, Araneid,Venoms, Spider,Venoms, Tarantula
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

V K Lishko, and Terletskaya YaT, and I O Trikash
May 1990, Biochimica et biophysica acta,
V K Lishko, and Terletskaya YaT, and I O Trikash
November 1986, The Journal of biological chemistry,
V K Lishko, and Terletskaya YaT, and I O Trikash
April 1985, Biochemical and biophysical research communications,
V K Lishko, and Terletskaya YaT, and I O Trikash
August 1982, Biochimica et biophysica acta,
V K Lishko, and Terletskaya YaT, and I O Trikash
November 1980, Journal of pharmaceutical sciences,
V K Lishko, and Terletskaya YaT, and I O Trikash
September 1987, Biochimica et biophysica acta,
V K Lishko, and Terletskaya YaT, and I O Trikash
November 1987, Journal of biochemistry,
V K Lishko, and Terletskaya YaT, and I O Trikash
September 2001, FEBS letters,
Copied contents to your clipboard!