| D008840 |
Microfilament Proteins |
Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. |
Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament |
|
| D002454 |
Cell Differentiation |
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. |
Differentiation, Cell,Cell Differentiations,Differentiations, Cell |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D015972 |
Gene Expression Regulation, Neoplastic |
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. |
Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic |
|
| D017570 |
MyoD Protein |
A myogenic regulatory factor that controls myogenesis. Though it is not clear how its function differs from the other myogenic regulatory factors, MyoD appears to be related to fusion and terminal differentiation of the muscle cell. |
MyoD Factor,Factor, MyoD,Protein, MyoD |
|
| D045744 |
Cell Line, Tumor |
A cell line derived from cultured tumor cells. |
Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines |
|
| D048868 |
Adaptor Proteins, Signal Transducing |
A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes |
Signal Transducing Adaptor Proteins |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D018485 |
Muscle Fibers, Skeletal |
Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation. |
Myocytes, Skeletal,Myotubes,Skeletal Myocytes,Skeletal Muscle Fibers,Fiber, Skeletal Muscle,Fibers, Skeletal Muscle,Muscle Fiber, Skeletal,Myocyte, Skeletal,Myotube,Skeletal Muscle Fiber,Skeletal Myocyte |
|
| D024510 |
Muscle Development |
Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. |
Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular |
|