Alpha Mangostin promotes myogenic differentiation of C2C12 mouse myoblast cells. 2020

Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.

Mangosteen, a fruit mainly produced in Southeast Asia, has been used as food and as an antipyretic and for treating skin diseases. The xanthones contained in mangosteen have many physiological activities including melanin suppression and anticancer activities, but little is known about the physiological effects of the most abundant xanthone, α-mangostin (α-MG) on myoblasts. In this study, we applied α-MG to C2C12 cells that had been induced to differentiate using 2% HS, and analyzed the physiological action of α-MS and the underlying mechanism in the context of myogenic differentiation. α-MG increased the survival rate of C2C12 cells in a concentration-dependent manner. Analysis of the morphological changes in the cells showed that α-MG significantly enhanced the myogenic differentiation of C2C12 myoblasts, whereas the mitochondrial number was only slightly affected. Expression analysis of differentiation-related proteins in C2C12 cells revealed that α-MG promoted the expression of MyoD and Myogenin. Thus, the present study revealed that α-MG improves the survival and myogenic differentiation of C2C12 myoblasts.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017570 MyoD Protein A myogenic regulatory factor that controls myogenesis. Though it is not clear how its function differs from the other myogenic regulatory factors, MyoD appears to be related to fusion and terminal differentiation of the muscle cell. MyoD Factor,Factor, MyoD,Protein, MyoD
D044004 Xanthones A group of XANTHENES that contain a 9-keto OXYGEN. Xanthone Derivatives,Derivatives, Xanthone
D048049 Extracellular Signal-Regulated MAP Kinases A mitogen-activated protein kinase subfamily that is widely expressed and plays a role in regulation of MEIOSIS; MITOSIS; and post mitotic functions in differentiated cells. The extracellular signal regulated MAP kinases are regulated by a broad variety of CELL SURFACE RECEPTORS and can be activated by certain CARCINOGENS. ERK MAP Kinase,ERK MAP Kinases,Extracellular Signal-Regulated Kinase,Extracellular Signal-Regulated Kinases,Extracellular Signal-Regulated MAP Kinase,MAP Kinases, Extracellular Signal-Regulated,Extracellular Signal Regulated Kinase,Extracellular Signal Regulated Kinases,Extracellular Signal Regulated MAP Kinase,Extracellular Signal Regulated MAP Kinases,Kinase, ERK MAP,Kinase, Extracellular Signal-Regulated,Kinases, Extracellular Signal-Regulated,MAP Kinase, ERK,MAP Kinases, Extracellular Signal Regulated,Signal-Regulated Kinase, Extracellular
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins

Related Publications

Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
January 2014, Bioscience, biotechnology, and biochemistry,
Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
July 2020, Biology open,
Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
April 2017, FEBS open bio,
Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
April 2015, BMC cell biology,
Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
March 2016, BMC cell biology,
Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
April 2015, Molecules and cells,
Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
April 2011, Journal of cellular physiology,
Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
June 2013, Biochemical and biophysical research communications,
Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
January 2015, DNA and cell biology,
Minhui Lin, and Siqi Zhou, and Kazuichi Sakamoto
January 2015, Biochemical and biophysical research communications,
Copied contents to your clipboard!