| D007476 |
Ionophores |
Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. |
Ionophore |
|
| D008051 |
Lipid Bilayers |
Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. |
Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer |
|
| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D010712 |
Phosphatidic Acids |
Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. |
Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium |
|
| D010767 |
Phosphorylcholine |
Calcium and magnesium salts used therapeutically in hepatobiliary dysfunction. |
Choline Chloride Dihydrogen Phosphate,Choline Phosphate Chloride,Phosphorylcholine Chloride,Choline Phosphate,Phosphocholine,Chloride, Choline Phosphate,Chloride, Phosphorylcholine,Phosphate Chloride, Choline,Phosphate, Choline |
|
| D011137 |
Polystyrenes |
Polymerized forms of styrene used as a biocompatible material, especially in dentistry. They are thermoplastic and are used as insulators, for injection molding and casting, as sheets, plates, rods, rigid forms and beads. |
Polystyrol,Polystyrene,Polystyrols |
|
| D011188 |
Potassium |
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE. |
|
|
| D002712 |
Chlorides |
Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. |
Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion |
|
| D053758 |
Nanoparticles |
Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. |
Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle |
|
| D055672 |
Static Electricity |
The accumulation of an electric charge on a object |
Electrostatic,Electrostatics,Static Charge,Charge, Static,Charges, Static,Electricity, Static,Static Charges |
|