Bacterial lipopeptides induce ion-conducting pores in planar bilayers. 1985

R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand

Bacterial lipopeptides, known for their antibiotic activities, have been tested for their ability to interact with lipid membranes. These lipopeptides, Iturin A, Bacillomycin L and D and Peptidolipin NA present analogous structural characteristics: a heptapeptidic cycle is linked to a hydrocarbon chain. We present evidence that these lipopeptides modify the conductance of planar bilayers by forming ion-conducting pores.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D055666 Lipopeptides Compounds consisting of a short peptide chain conjugated with an acyl chain. Lipopeptide,Anionic Lipopeptide,Anionic Lipopeptides,Cationic Lipopeptide,Cationic Lipopeptides,Lipopeptide, Anionic,Lipopeptide, Cationic,Lipopeptides, Anionic,Lipopeptides, Cationic
D023181 Antimicrobial Cationic Peptides Small cationic peptides that are an important component, in most species, of early innate and induced defenses against invading microbes. In animals they are found on mucosal surfaces, within phagocytic granules, and on the surface of the body. They are also found in insects and plants. Among others, this group includes the DEFENSINS, protegrins, tachyplesins, and thionins. They displace DIVALENT CATIONS from phosphate groups of MEMBRANE LIPIDS leading to disruption of the membrane. Cationic Antimicrobial Peptide,Cationic Antimicrobial Peptides,Cationic Host Defense Peptides,Host Defense Peptide,Microbicidal Cationic Proteins,Amphipathic Cationic Antimicrobial Peptides,Host Defense Peptides,Antimicrobial Peptide, Cationic,Antimicrobial Peptides, Cationic,Cationic Peptides, Antimicrobial,Cationic Proteins, Microbicidal,Defense Peptide, Host,Defense Peptides, Host,Peptide, Cationic Antimicrobial,Peptide, Host Defense,Peptides, Antimicrobial Cationic,Peptides, Cationic Antimicrobial,Peptides, Host Defense,Proteins, Microbicidal Cationic

Related Publications

R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
July 2012, FEBS letters,
R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
November 1995, Neuroreport,
R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
October 2019, The Journal of membrane biology,
R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
July 1982, Biochemical and biophysical research communications,
R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
December 2013, Physical review. E, Statistical, nonlinear, and soft matter physics,
R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
September 2018, Methods (San Diego, Calif.),
R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
May 2013, Biophysical journal,
R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
December 1991, Physical review. A, Atomic, molecular, and optical physics,
R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
November 2002, Biophysical journal,
R Maget-Dana, and F Heitz, and M Ptak, and F Peypoux, and M Guinand
September 2013, Biochimica et biophysica acta,
Copied contents to your clipboard!