Neuroprotective effect of insulin-like growth factor-1: effects on tyrosine kinase receptor (Trk) expression in dorsal root ganglion neurons with glutamate-induced excitotoxicity in vitro. 2013

Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
Department of Anatomy, Shandong University School of Medicine, Jinan 250012, China. lihao462929@163.com

Insulin-like growth factor-1 (IGF-1) may play an important role in regulating the expression of distinct tyrosine kinase receptor (Trk) in primary sensory dorsal root ganglion (DRG) neurons. Glutamate (Glu) is the main excitatory neurotransmitter and induces neuronal excitotoxicity for primary sensory neurons. It is not known whether IGF-1 influences expression of TrkA, TrkB, and TrkC in DRG neurons with excitotoxicity induced by Glu. In the present study, primary cultured DRG neurons with Glu-induced excitotoxicity were used to determine the effects of IGF-1 on TrkA, TrkB, and TrkC expression. The results showed that IGF-1 increased the expression of TrkA and TrkB and their mRNAs, but not TrkC and its mRNA, in primary cultured DRG neurons with excitotoxicity induced by Glu. Interestingly, neither the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 nor the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked the effect of IGF-1, but both inhibitors together were effective. IGF-1 may play an important role in regulating different Trk receptor expression in DRG neurons through ERK1/2 and PI3K/Akt signaling pathways. The contribution of distinct Trk receptors might be one of the mechanisms that IGF-1 rescues dying neurons from Glu excitotoxic injury. These data imply that IGF-1 signaling might be a potential target on modifying distinct Trk receptor-mediated biological effects of primary sensory neurons with excitotoxicity.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018696 Neuroprotective Agents Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids. Neuroprotectant,Neuroprotective Agent,Neuroprotective Drug,Neuroprotectants,Neuroprotective Drugs,Neuroprotective Effect,Neuroprotective Effects,Agent, Neuroprotective,Agents, Neuroprotective,Drug, Neuroprotective,Drugs, Neuroprotective,Effect, Neuroprotective,Effects, Neuroprotective
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum
D020794 Receptor Protein-Tyrosine Kinases A class of cellular receptors that have an intrinsic PROTEIN-TYROSINE KINASE activity. PTK Receptor,Receptors, Protein-Tyrosine Kinase,Tyrosine Kinase Linked Receptor,Tyrosine Kinase Linked Receptors,Tyrosine Kinase Receptor,Tyrosine Kinase Receptors,PTK Receptors,Protein-Tyrosine Kinase Receptor,Receptor Protein-Tyrosine Kinase,Kinase Receptor, Tyrosine,Kinase, Receptor Protein-Tyrosine,Kinases, Receptor Protein-Tyrosine,Protein-Tyrosine Kinase Receptors,Protein-Tyrosine Kinase, Receptor,Protein-Tyrosine Kinases, Receptor,Receptor Protein Tyrosine Kinase,Receptor Protein Tyrosine Kinases,Receptor, PTK,Receptor, Protein-Tyrosine Kinase,Receptor, Tyrosine Kinase,Receptors, PTK,Receptors, Protein Tyrosine Kinase

Related Publications

Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
January 2013, Brain research bulletin,
Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
January 2013, Die Pharmazie,
Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
January 2013, Regulatory peptides,
Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
March 2014, Cellular and molecular neurobiology,
Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
April 2010, Neuroscience bulletin,
Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
January 2010, Die Pharmazie,
Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
January 2013, Neuroscience research,
Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
March 2017, Toxicology and industrial health,
Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
November 2010, The International journal of neuroscience,
Hao Li, and Haixia Dong, and Jianmin Li, and Huaxiang Liu, and Zhen Liu, and Zhenzhong Li
February 2017, Nutritional neuroscience,
Copied contents to your clipboard!