Cortical rotation and messenger RNA localization in Xenopus axis formation. 2012

Douglas W Houston
Department of Biology, University of Iowa, Iowa City, IA, USA. douglas-houston@uiowa.edu

In Xenopus eggs, fertilization initiates a rotational movement of the cortex relative to the cytoplasm, resulting in the transport of critical determinants to the future dorsal side of the embryo. Cortical rotation is mediated by microtubules, resulting in activation of the Wnt/β-catenin signaling pathway and expression of organizer genes on the dorsal side of the blastula. Similar cytoplasmic localizations resulting in β-catenin activation occur in many chordate embryos, suggesting a deeply conserved mechanism for patterning early embryos. This review summarizes the experimental evidence for the molecular basis of this model, focusing on recent maternal loss-of-function studies that shed light on two main unanswered questions: (1) what regulates microtubule assembly during cortical rotation and (2) how is Wnt/β-catenin signaling activated dorsally? In addition, as these processes depend on vegetally localized molecules in the oocyte, the mechanisms of RNA localization and novel roles for localized RNAs in axis formation are discussed. The work reviewed here provides a beginning framework for understanding the coupling of asymmetry in oogenesis with the establishment of asymmetry in the embryo.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
D060449 Wnt Signaling Pathway A complex signaling pathway whose name is derived from the DROSOPHILA Wg gene, and the vertebrate INT gene. The signaling pathway is initiated by the binding of WNT PROTEINS to cell surface WNT RECEPTORS which interact with the AXIN SIGNALING COMPLEX and an array of second messengers that influence the actions of BETA CATENIN. Wnt Signaling,Wnt Pathway,Wnt Pathway, Canonical,Wnt beta-Catenin Signaling Pathway,Canonical Wnt Pathway,Canonical Wnt Pathways,Pathway, Canonical Wnt,Pathway, Wnt,Pathway, Wnt Signaling,Signaling Pathway, Wnt,Signaling, Wnt,Wnt Signaling Pathways,Wnt Signalings,Wnt beta Catenin Signaling Pathway
D019521 Body Patterning The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc. Axial Patterning (Embryology),Embryonic Pattern Formation,Polarity of Development,Body Pattern Formation,Body Pattern Specification,Embryonic Pattern Specification,Development Polarity,Embryonic Pattern Formations,Formation, Embryonic Pattern,Pattern Formation, Body,Pattern Formation, Embryonic,Pattern Specification, Body,Pattern Specification, Embryonic,Patterning, Axial (Embryology),Patterning, Body,Specification, Body Pattern,Specification, Embryonic Pattern
D034443 RNA Transport The process of moving specific RNA molecules from one cellular compartment or region to another by various sorting and transport mechanisms. Messenger RNA Localization Processes, Cellular,Messenger RNA Sorting,RNA Localization Processes, Cellular,RNA Sorting,Ribonucleic Acid Transport,mRNA Localization Processes, Cellular,mRNA Sorting,Acid Transport, Ribonucleic,RNA Sorting, Messenger,Sorting, Messenger RNA,Sorting, RNA,Sorting, mRNA,Transport, RNA,Transport, Ribonucleic Acid

Related Publications

Douglas W Houston
January 1989, Ciba Foundation symposium,
Douglas W Houston
December 1990, Current opinion in cell biology,
Douglas W Houston
February 1979, European journal of biochemistry,
Douglas W Houston
January 1989, Journal of molecular neuroscience : MN,
Douglas W Houston
June 1986, Journal of embryology and experimental morphology,
Douglas W Houston
January 2001, Results and problems in cell differentiation,
Douglas W Houston
December 1997, Seminars in cell & developmental biology,
Douglas W Houston
July 1998, BioEssays : news and reviews in molecular, cellular and developmental biology,
Copied contents to your clipboard!