Localization of VIP and PHI-27 messenger RNA in rat thalamic and cortical neurons. 1989

F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
Medical Products Department, E.I. Dupont de Nemours and Co., Wilmington, Delaware.

Messenger RNA (mRNA) coding for vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI-27) were localized in cortical and thalamic neurons with synthetic DNA probes complementary to the PHI-27 and VIP exon coding sequence of the rat VIP precursor gene. Hybridization signal with these probes was found widely distributed in the thalamus, neocortex, and pyriform cortex, and the distribution of hybridization signal for each probe was identical. Furthermore, the distribution of each message was correlated closely with peptide distribution demonstrated immunohistochemically. Labeling of individual neurons with in situ hybridization histochemistry was characterized by a dense accumulation of silver grains in the cytoplasm of these cells with little or no label in the nucleus. Labeled neurons in the thalamus were observed in the ventrolateral, ventromedial, ventrobasal, and lateral reticular nuclei. In the neocortex, the distribution of labeled neurons was concentrated in layers II and III with scattered cells also apparent in deeper cortical layers. Hybridization signal was limited to nonpyramidal neurons in both the neo- and pyriform cortex. The coextensive distribution of immunoreactivity and mRNA coding regions for VIP and PHI-27 establishes that these peptides are synthesized from the same precursor mRNA in the same thalamic and cortical cell groups. Although the physiological role of these peptides in thalamocortical function remains unknown, these data provide an anatomical substrate which suggests that VIP and PHI-27 may be cotransmitters in thalamic and cortical neurons.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010451 Peptide PHI A 27-amino acid peptide with histidine at the N-terminal and isoleucine amide at the C-terminal. The exact amino acid composition of the peptide is species dependent. The peptide is secreted in the intestine, but is found in the nervous system, many organs, and in the majority of peripheral tissues. It has a wide range of biological actions, affecting the cardiovascular, gastrointestinal, respiratory, and central nervous systems. Neuropeptide PHI 27,PHI Peptide,Peptide Histidine-Isoleucine,Peptide PHM,Human PHI,PHM Neuropeptide,PHM-27,Peptide HI,Peptide Histidine Methionine,Peptide PHI-27,Peptide-Histidine-Isoleucinamide,Porcine Intestinal Heptacosapeptide,Pro-Vasoactive Intestinal Peptide,Heptacosapeptide, Porcine Intestinal,Histidine Methionine, Peptide,Histidine-Isoleucine, Peptide,Intestinal Heptacosapeptide, Porcine,Intestinal Peptide, Pro-Vasoactive,Methionine, Peptide Histidine,Neuropeptide, PHM,PHI, Human,PHM, Peptide,Peptide Histidine Isoleucinamide,Peptide Histidine Isoleucine,Peptide PHI 27,Peptide, PHI,Peptide, Pro-Vasoactive Intestinal,Pro Vasoactive Intestinal Peptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005260 Female Females

Related Publications

F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
July 1992, Current eye research,
F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
June 1997, Neuroscience,
F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
January 2012, Wiley interdisciplinary reviews. Developmental biology,
F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
January 1999, Neuroscience,
F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
June 2016, Cerebral cortex (New York, N.Y. : 1991),
F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
June 1988, Circulation research,
F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
March 2007, Ideggyogyaszati szemle,
F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
June 1997, Neuroscience,
F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
September 1985, Regulatory peptides,
F Baldino, and S Fitzpatrick-McElligott, and I Gozes, and J P Card
September 1996, Molecular psychiatry,
Copied contents to your clipboard!