Effect of ionophores and pH on growth of Streptococcus bovis in batch and continuous culture. 1990

J M Chow, and J B Russell
Department of Animal Science, Cornell University, Ithaca, New York.

Batch cultures (pH 6.7) of Streptococcus bovis JB1 were severely inhibited by 1.25 and 5 microM lasalocid and monensin, respectively, even though large amounts of glucose remained in the medium. However, continuous cultures tolerated as much as 10 and 20 microM, respectively, and used virtually all of the glucose. Although continuous cultures grew with high concentrations of ionophore, the yield of bacterial protein decreased approximately 10-fold. When pH was decreased from 6.7 to 5.7, the potency of both ionophores increased, but lasalocid always caused a larger decrease in yield. The increased activity of lasalocid at pH 5.7 could largely be explained by an increased binding of the ionophore to the cell membrane. Because monensin did not show an increased binding at low pH, some other factor (e.g., ion turnover) must have been influencing its activity. There was a linear increase in lasalocid binding as the concentration increased, but monensin binding increased markedly at high concentrations. Based on the observations that (i) S. bovis cells bound significant amounts of ionophore (the ratio of ionophore to cell material was more important than the absolute concentration), (ii) batch cultures responded differently from continuous cultures, and (iii) pH can have a marked effect on ionophore activity, it appears that the term "minimum inhibitory concentration" may not provide an accurate assessment of microbial growth inhibition in vivo.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007832 Lasalocid Cationic ionophore antibiotic obtained from Streptomyces lasaliensis that, among other effects, dissociates the calcium fluxes in muscle fibers. It is used as a coccidiostat, especially in poultry. Avatec,Lasalocid A,Ro 2-2985,X-537A,Ro 2 2985,Ro 22985,X 537A,X537A
D008985 Monensin An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts' development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies. Coban,Monensin Monosodium Salt,Monensin Sodium,Monensin-A-Sodium Complex,Rumensin,Monensin A Sodium Complex
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013291 Streptococcus A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.

Related Publications

J M Chow, and J B Russell
September 1986, The Journal of applied bacteriology,
J M Chow, and J B Russell
November 1974, Applied microbiology,
J M Chow, and J B Russell
November 1964, Archiv fur Mikrobiologie,
J M Chow, and J B Russell
April 1978, Canadian journal of microbiology,
J M Chow, and J B Russell
October 1976, Biochimica et biophysica acta,
Copied contents to your clipboard!