Quantitation of endogenous liver apolipoprotein B mRNA editing. 1990

J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
Department of Biochemistry, University of Rochester, NY 14642.

The mRNA for apolipoprotein B is translated into either a high molecular weight (apo BH) or low molecular weight (apo BL) form of the protein depending on a novel form of RNA processing known as RNA editing. Apo BH mRNA editing is both tissue-specific and hormonally regulated and involves transition of cytidine to uridine at codon 2153 thereby converting a glutamine codon (CAA) to a translational stop codon (UAA). Three methods for quantitating the endogenous levels of liver apo B mRNA editing were compared: (1) Southern blot hybridization with discriminative thermal washes, (2) competimer-hybridization with discriminative thermal washes and (3) competimer-polymerase chain reaction (competimer-PCR). The data suggest that hybridization and PCR can yield similar quantitation when competing oligonucleotides are used. Based on competimer-PCR it is proposed that 40% and 85% of normal rat liver and small intestine apo B mRNA (respectively) are edited.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001055 Apolipoproteins B Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA. Apo-B,Apo B,ApoB,Apoprotein (B),Apoproteins B
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
October 2000, Biochemical and biophysical research communications,
J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
April 2001, Current opinion in lipidology,
J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
October 1999, The Journal of nutrition,
J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
March 1997, Biochimica et biophysica acta,
J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
February 1994, The Journal of biological chemistry,
J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
October 1992, Biochemical and biophysical research communications,
J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
February 1992, Arteriosclerosis and thrombosis : a journal of vascular biology,
J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
September 1991, The Journal of biological chemistry,
J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
February 1991, Proceedings of the National Academy of Sciences of the United States of America,
J W Backus, and M J Eagleton, and S G Harris, and C E Sparks, and J D Sparks, and H C Smith
August 1993, Seminars in cell biology,
Copied contents to your clipboard!