Multiway study of hybridization in nanoscale semiconductor labeled DNA based on fluorescence resonance energy transfer. 2013

Somayeh Gholami, and Mohsen Kompany-Zareh
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.

The resolution of the ternary-binary complex competition of a target sequence and of its two complementary probes in sandwich DNA hybridization is reported. To achieve this goal, Fluorescence Resonance Energy Transfer (FRET) between oligonucleotide-functionalized quantum dot (QD) nanoprobes (QD donor-QD acceptor) upon hybridization with a label free target was monitored by two-dimensional photoluminescence excitation spectroscopy (2D-PLE). Detection of a target oligonucleotide strand, using sandwiched nanoassembly in a separation-free format, was performed with the appearance of a new feature in the photoluminescence excitation (PLE) plot. From the obtained data, energy transfer efficiency and Förster radius (R0) were calculated. In particular, our results demonstrated that energy transfer by using QD donor-QD acceptor FRET pairs is more efficient in comparison with QD donor-organic dye acceptor pairs. Soft and model based analysis of 2D-PLE data was implemented by means of PARAFAC and hard trilinear decomposition (HTD), allowing to fit a proper model for FRET-based sandwich DNA hybridization systems. This study is the first successful application of a multiway chemometric technique to consider FRET based DNA hybridization in sandwiched nanoassemblies. A multi-equilibria model was properly fitted to the data and confirmed there is a competition between ternary and binary complex formation. Equilibrium constants of DNA hybridization in sandwiched nanoassemblies were estimated for the first time. Equilibrium constants illustrated that the extent of hybridization in one side on the target strand depends on hybridization conditions on the other side of the strand. Effects of guanine (G) and cytosine (C) contents of strands on the extent and rate of hybridization were investigated. In addition to equilibrium constants of binary and ternary complexes, the pure profiles of all resolved structures were estimated. Ultimately, the described method calculated the analytical concentration of probes as a measure of surface modification yield with DNA using nonlinear fit analysis, without using any calibration sample.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D012666 Semiconductors Materials that have a limited and usually variable electrical conductivity. They are particularly useful for the production of solid-state electronic devices. Semiconductor
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal
D045663 Quantum Dots Nanometer sized fragments of semiconductor crystalline material which emit PHOTONS. The wavelength is based on the quantum confinement size of the dot. They can be embedded in MICROBEADS for high throughput ANALYTICAL CHEMISTRY TECHNIQUES. Nanocrystals, Semiconductor,Semiconductor Nanocrystals,Semiconductor Nanoparticles,Dot, Quantum,Dots, Quantum,Nanocrystal, Semiconductor,Nanoparticle, Semiconductor,Nanoparticles, Semiconductor,Quantum Dot,Semiconductor Nanocrystal,Semiconductor Nanoparticle
D031541 Fluorescence Resonance Energy Transfer A type of FLUORESCENCE SPECTROSCOPY using two FLUORESCENT DYES with overlapping emission and absorption spectra, which is used to indicate proximity of labeled molecules. This technique is useful for studying interactions of molecules and PROTEIN FOLDING. Forster Resonance Energy Transfer

Related Publications

Somayeh Gholami, and Mohsen Kompany-Zareh
January 1992, Nucleic acids symposium series,
Somayeh Gholami, and Mohsen Kompany-Zareh
January 2006, Methods in molecular biology (Clifton, N.J.),
Somayeh Gholami, and Mohsen Kompany-Zareh
January 2006, Methods in molecular biology (Clifton, N.J.),
Somayeh Gholami, and Mohsen Kompany-Zareh
December 1999, Analytical biochemistry,
Somayeh Gholami, and Mohsen Kompany-Zareh
December 2005, The journal of physical chemistry. B,
Somayeh Gholami, and Mohsen Kompany-Zareh
February 2010, Analytical chemistry,
Somayeh Gholami, and Mohsen Kompany-Zareh
June 1998, Analytical biochemistry,
Somayeh Gholami, and Mohsen Kompany-Zareh
June 2010, Biosensors & bioelectronics,
Somayeh Gholami, and Mohsen Kompany-Zareh
December 2016, The journal of physical chemistry. B,
Somayeh Gholami, and Mohsen Kompany-Zareh
December 2001, Journal of the American Chemical Society,
Copied contents to your clipboard!