Design and application of an in vivo reporter assay for phenylalanine ammonia-lyase. 2013

Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.

Phenylalanine ammonia-lyase (PAL) is an important enzyme that links primary metabolism to secondary metabolism. Its efficiency is often a critical factor that affects the overall flux of a related metabolic pathway, the titer of the final products, and the efficacy of PAL-based therapies. Thus, PAL is a common target for metabolic engineering, and it is of significant interest to screen efficient PALs for industrial and medical applications. In this study, a novel and efficient visible reporter assay for screening of PAL efficiency in Escherichia coli was established based on a plant type III polyketide biosynthetic pathway. The candidate PALs were co-expressed with a 4-coumarate:CoA ligase 4CL1 from Arabidopsis thaliana and curcuminoid synthase (CUS) from Oryza sativa in E. coli BL21(DE3) to form a dicinnamoylmethane biosynthetic pathway. Taking advantage of the yellow color of the product, a microplate-based assay was designed to measure the titer of dicinnamoylmethane, which was validated by HPLC analysis. The different titers of the product reflect the overall performance (expression level and enzymatic activity) of the individual PALs in E. coli. Using this system, we have screened three PALs (PAL1, PAL3, and PAL4) from Trifolium pratense, among which PAL1 showed the best performance in E. coli. The engineered E. coli strain containing PAL1, 4CL1, and CUS led to the production of dicinnamoylmethane at a high level of 0.36 g/l. Supplement of 2-fluoro-phenylalanine yielded two fluorinated dicinnamoylmethane derivatives, 6,6'-difluoro-dicinnamoylmethane and 6-fluoro-dicinnamoylmethane, of which the latter is a new curcuminoid.

UI MeSH Term Description Entries
D008025 Ligases A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6. Ligase,Synthetases,Synthetase
D010650 Phenylalanine Ammonia-Lyase An enzyme that catalyzes the deamination of PHENYLALANINE to form trans-cinnamate and ammonia. Phenylalanine-Tyrosine Ammonia-lyase,Ammonia-Lyase, Phenylalanine,Ammonia-lyase, Phenylalanine-Tyrosine,Phenylalanine Ammonia Lyase,Phenylalanine Tyrosine Ammonia lyase
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D003066 Coenzyme A Ligases Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A
D003474 Curcumin A yellow-orange dye obtained from tumeric, the powdered root of CURCUMA longa. It is used in the preparation of curcuma paper and the detection of boron. Curcumin appears to possess a spectrum of pharmacological properties, due primarily to its inhibitory effects on metabolic enzymes. 1,6-Heptadiene-3,5-dione, 1,7-bis(4-hydroxy-3-methoxyphenyl)-, (E,E)-,Curcumin Phytosome,Diferuloylmethane,Mervia,Turmeric Yellow,Phytosome, Curcumin,Yellow, Turmeric
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012275 Oryza A genus of grass family (Poaceae) that include several rice species. Oryza sativa,Rice,Rices
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D057075 Enzyme Assays Methods used to measure the relative activity of a specific enzyme or its concentration in solution. Typically an enzyme substrate is added to a buffer solution containing enzyme and the rate of conversion of substrate to product is measured under controlled conditions. Many classical enzymatic assay methods involve the use of synthetic colorimetric substrates and measuring the reaction rates using a spectrophotometer. Enzymatic Assays,Indirect Enzymatic Assays,Indirect Enzyme Assays,Assay, Enzymatic,Assay, Enzyme,Assay, Indirect Enzymatic,Assay, Indirect Enzyme,Assays, Enzymatic,Assays, Enzyme,Assays, Indirect Enzymatic,Assays, Indirect Enzyme,Enzymatic Assay,Enzymatic Assay, Indirect,Enzymatic Assays, Indirect,Enzyme Assay,Enzyme Assay, Indirect,Enzyme Assays, Indirect,Indirect Enzymatic Assay,Indirect Enzyme Assay
D017930 Genes, Reporter Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest. Reporter Genes,Gene, Reporter,Reporter Gene

Related Publications

Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
March 1976, Cancer treatment reports,
Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
September 2012, Journal of plant physiology,
Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
July 1992, World journal of microbiology & biotechnology,
Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
January 1997, Plant physiology,
Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
December 2011, Mycobiology,
Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
January 1980, Biochimie,
Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
July 2014, Lancet (London, England),
Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
March 1987, Biochemistry international,
Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
January 1980, Mikrobiologiia,
Siyuan Wang, and Shuwei Zhang, and Tong Zhou, and Jia Zeng, and Jixun Zhan
January 1984, Applied biochemistry and biotechnology,
Copied contents to your clipboard!