Single-particle tracking reveals switching of the HIV fusion peptide between two diffusive modes in membranes. 2013

Maria Ott, and Yechiel Shai, and Gilad Haran
Departments of Chemical Physics and ‡Biological Chemistry, Weizmann Institute of Science , Rehovot 76100, Israel.

Fusion of the HIV membrane with that of a target T cell is an essential first step in the viral infection process. Here we describe single-particle tracking (SPT) studies of a 16-amino-acid peptide derived from the HIV fusion protein (FP16), as it interacts with a supported lipid bilayer. FP16 was found to spontaneously insert into and move within the bilayer with two different modes of diffusion, a fast mode with a diffusion coefficient typical of protein motion in membranes and a much slower one. We observed transitions between the two modes: slow peptides were found to speed up, and fast peptides could slow down. Hidden Markov model analysis was employed as a method for the identification of the two modes in single-molecule trajectories and analysis of their interconversion rates. Surprisingly, the diffusion coefficients of the two modes were found to depend differently on solution viscosity. Thus, whereas the fast diffusive mode behaved as predicted by the Saffman-Delbrück theory, the slow mode behaved according to the Stokes-Einstein relation. To further characterize the two diffusive modes, FP16 molecules were studied in bilayers cooled through their liquid crystalline-to-gel phase transition. Our analysis suggested that the slow diffusive mode might originate from the formation of large objects, such as lipid domains or local protrusions, which are induced by the peptides and move together with them.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008390 Markov Chains A stochastic process such that the conditional probability distribution for a state at any future instant, given the present state, is unaffected by any additional knowledge of the past history of the system. Markov Process,Markov Chain,Chain, Markov,Chains, Markov,Markov Processes,Process, Markov,Processes, Markov
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer

Related Publications

Maria Ott, and Yechiel Shai, and Gilad Haran
February 2022, Analytical chemistry,
Maria Ott, and Yechiel Shai, and Gilad Haran
May 2018, Journal of physics. Condensed matter : an Institute of Physics journal,
Maria Ott, and Yechiel Shai, and Gilad Haran
February 2011, Physical chemistry chemical physics : PCCP,
Maria Ott, and Yechiel Shai, and Gilad Haran
January 2015, Methods in molecular biology (Clifton, N.J.),
Maria Ott, and Yechiel Shai, and Gilad Haran
October 2015, Applied physics letters,
Maria Ott, and Yechiel Shai, and Gilad Haran
July 2021, Entropy (Basel, Switzerland),
Maria Ott, and Yechiel Shai, and Gilad Haran
June 2006, Langmuir : the ACS journal of surfaces and colloids,
Maria Ott, and Yechiel Shai, and Gilad Haran
July 2018, Biophysical journal,
Maria Ott, and Yechiel Shai, and Gilad Haran
May 2002, Bulletin of mathematical biology,
Maria Ott, and Yechiel Shai, and Gilad Haran
January 2012, Biochemical and biophysical research communications,
Copied contents to your clipboard!