Clindamycin binding to ribosomes revisited: foot printing and computational detection of two binding sites within the peptidyl transferase center. 2013

O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
Department of Biochemistry, School of Medicine, University of Patras, Greece.

Clindamycin is a semi-synthetic lincosamide, active against most Gram-positive bacteria and some protozoa. It binds to the 50S ribosomal subunit and inhibits early peptide chain elongation. By kinetic analysis it has been shown that clindamycin (I) competitively interacts with the A-site of translating ribosomes (C) to form the encounter complex CI, which then slowly isomerizes to a tighter complex, termed C*I. As the final complex is capable of synthesizing peptide bonds with decreased velocity, it was assumed that in C*I complex the drug is fixed near the P-site of the ribosome. In the present study, two series of chemical foot printing experiments were carried out. In the first series, clindamycin and ribosomal complex C were incubated for 1 s and then DMS or kethoxal was added (CI probing). In the second series, complex C was preincubated with clindamycin for 1 min before the addition of DMS or kethoxal (C*I probing). It was found that clindamycin in CI complex protects A2451 and A2602 from chemical probing, both located within the A-site of the catalytic center. In contrast, it strongly protects G2505 in C*I complex, which is a discrete foot print of peptidyl-tRNA bound to the P-site. In both CI and C*I complexes, clindamycin also protects nucleotides A2058 and A2059, located next to the entrance of the exit-tunnel where the nascent peptide leaves the ribosome. Polyamines negatively affect the protection of G2505, but favor the protection of A2451 and A2602 nucleotides. Structure modeling confirms the kinetic and chemical foot printing results and suggests that clindamycin mode of action is more complex than a simple competitive inhibition of peptide bond formation.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010458 Peptidyl Transferases Acyltransferases that use AMINO ACYL TRNA as the amino acid donor in formation of a peptide bond. There are ribosomal and non-ribosomal peptidyltransferases. Peptidyl Transferase,Peptidyl Translocase,Peptidyl Translocases,Peptidyltransferase,Transpeptidase,Transpeptidases,Peptidyltransferases,Transferase, Peptidyl,Transferases, Peptidyl,Translocase, Peptidyl,Translocases, Peptidyl
D002981 Clindamycin An antibacterial agent that is a semisynthetic analog of LINCOMYCIN. 7-Chloro-7-deoxylincomycin,Chlolincocin,Chlorlincocin,Cleocin,Clindamycin Hydrochloride,Clindamycin Monohydrochloride,Clindamycin Monohydrochloride, Monohydrate,Dalacin C,7 Chloro 7 deoxylincomycin,Hydrochloride, Clindamycin,Monohydrate Clindamycin Monohydrochloride,Monohydrochloride, Clindamycin,Monohydrochloride, Monohydrate Clindamycin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome

Related Publications

O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
December 1975, Nucleic acids research,
O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
February 1970, FEBS letters,
O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
January 1999, Journal of molecular biology,
O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
June 1979, FEBS letters,
O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
June 1975, European journal of biochemistry,
O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
December 2015, RNA (New York, N.Y.),
O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
September 1980, FEBS letters,
O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
January 1969, Cold Spring Harbor symposia on quantitative biology,
O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
May 1974, European journal of biochemistry,
O N Kostopoulou, and G Papadopoulos, and E C Kouvela, and D L Kalpaxis
May 2000, RNA (New York, N.Y.),
Copied contents to your clipboard!