Comparison of loxiglumide, a cholecystokinin receptor antagonist, and atropine on hormonal and meal-stimulated pancreatic secretion in man. 1990

A Gabryelewicz, and E Kulesza, and S J Konturek
Gastroenterological Clinic, Academy of Medicine, Bialystok, Poland.

The effects of loxiglumide, a potent cholecystokinin (CCK)-receptor antagonist, and atropine, a muscarinic receptor blocker, on exocrine pancreatic secretion stimulated by hormones (secretin plus CCK) and a Lundh test meal were studied in healthy young volunteers. Loxiglumide infused intravenously in gradually increasing doses (2-16 mumol/kg-h) caused a dose-dependent inhibition of pancreatic enzyme secretion induced by intravenous infusion of a constant dose of secretin (82 pmol/kg-h) plus CCK-8 (85 pmol/kg-h) but had relatively smaller influence on duodenal volume flow and bicarbonate output. Atropine (20 nmol/kg) also caused a significant reduction in pancreatic enzyme secretion but failed to affect the volume flow or bicarbonate secretion induced by secretin plus CCK, possibly owing to the high doses of secretin and CCK used in these tests. Both loxiglumide and atropine inhibited the pancreatic enzyme response to a Lundh meal, but atropine was more effective in the early phase and loxiglumide in the late phase of the postprandial secretion. Neither loxiglumide nor atropine affected the plasma gastrin and CCK levels, but both antagonists reduced plasma pancreatic polypeptide responses to the Lundh meal. We conclude that 1) loxiglumide results in a relatively stronger suppression of the pancreatic enzyme than aqueous-alkaline secretion induced by secretin plus CCK, whereas atropine inhibits only enzyme secretion; and 2) both loxiglumide and atropine suppress the pancreatic enzyme responses to the meal stimulation without affecting the postprandial plasma gastrin and CCK responses.

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011377 Proglumide A drug that exerts an inhibitory effect on gastric secretion and reduces gastrointestinal motility. It is used clinically in the drug therapy of gastrointestinal ulcers. Xylamide,Milid,Xilamide
D011949 Receptors, Cholecystokinin Cell surface proteins that bind cholecystokinin (CCK) with high affinity and trigger intracellular changes influencing the behavior of cells. Cholecystokinin receptors are activated by GASTRIN as well as by CCK-4; CCK-8; and CCK-33. Activation of these receptors evokes secretion of AMYLASE by pancreatic acinar cells, acid and PEPSIN by stomach mucosal cells, and contraction of the PYLORUS and GALLBLADDER. The role of the widespread CCK receptors in the central nervous system is not well understood. CCK Receptors,Caerulein Receptors,Cholecystokinin Octapeptide Receptors,Cholecystokinin Receptors,Pancreozymin Receptors,Receptors, CCK,Receptors, Caerulein,Receptors, Pancreozymin,Receptors, Sincalide,Sincalide Receptors,CCK Receptor,CCK-4 Receptors,CCK-8 Receptors,Cholecystokinin Receptor,Receptors, CCK-4,Receptors, CCK-8,Receptors, Cholecystokinin Octapeptide,CCK 4 Receptors,CCK 8 Receptors,Octapeptide Receptors, Cholecystokinin,Receptor, CCK,Receptor, Cholecystokinin,Receptors, CCK 4,Receptors, CCK 8
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D004386 Duodenum The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers. Duodenums
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D005526 Food, Formulated Food and dietary formulations including elemental (chemically defined formula) diets, synthetic and semisynthetic diets, space diets, weight-reduction formulas, tube-feeding diets, complete liquid diets, and supplemental liquid and solid diets. Diet, Chemically Defined,Diet, Elemental,Diet, Formula,Diet, Synthetic,Dietary Formulations,Chemically Defined Diet,Synthetic Diet,Chemically Defined Diets,Dietary Formulation,Diets, Chemically Defined,Diets, Elemental,Diets, Formula,Diets, Synthetic,Elemental Diet,Elemental Diets,Foods, Formulated,Formulated Food,Formulated Foods,Formulation, Dietary,Formulations, Dietary
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A Gabryelewicz, and E Kulesza, and S J Konturek
April 1989, Gastroenterology,
A Gabryelewicz, and E Kulesza, and S J Konturek
January 1990, European journal of clinical pharmacology,
A Gabryelewicz, and E Kulesza, and S J Konturek
November 1994, European journal of pharmacology,
A Gabryelewicz, and E Kulesza, and S J Konturek
January 1998, Arzneimittel-Forschung,
A Gabryelewicz, and E Kulesza, and S J Konturek
January 1998, Arzneimittel-Forschung,
A Gabryelewicz, and E Kulesza, and S J Konturek
April 1992, International journal of pancreatology : official journal of the International Association of Pancreatology,
Copied contents to your clipboard!