Small molecule inhibitors of WNT/β-catenin signaling block IL-1β- and TNFα-induced cartilage degradation. 2013

Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien

BACKGROUND In this study, we tested the ability of small molecule inhibitors of WNT/β-catenin signaling to block interleukin 1β (IL-1β)- and tumor necrosis factor α (TNFα)-induced cartilage degradation. Proinflammatory cytokines such as IL-1β and TNFα are potent inducers of cartilage degradation by upregulating matrix metalloproteinase (MMP) expression and activity. Because WNT/β-catenin signaling was found to be involved in IL-1β- and TNFα-induced upregulation of MMP activity, we hypothesized that inhibition of WNT/β-catenin signaling might block IL-1β- and TNFα-induced cartilage degradation. We tested the effect of small molecules that block the interaction between β-catenin and TCF/Lef transcription factors on IL-1β- and TNFα-induced cartilage degradation in mouse fetal metatarsals. METHODS We used mouse fetal metatarsals treated with IL-1β and TNFα as an ex vivo model for cytokine-induced cartilage degradation. Metatarsals were treated with IL-1β and TNFα in combination with the small molecules PKF115-584, PKF118-310 and CGP049090 at different concentrations and then harvested them for histological and gene expression analysis. RESULTS We found that IL-1β- and TNFα-induced cartilage degradation in mouse fetal metatarsals was blocked by inhibiting WNT/β-catenin signaling using small molecule PKF115-584 and partially using CGP049090 dose-dependently. In addition, we found that PKF115-584 blocked IL-1β- and TNFα-induced MMP mRNA expression, but did not reverse the inhibitory effect of IL-1β on the expression of cartilage anabolic genes. CONCLUSIONS In this study, we show that inhibition of WNT/β-catenin signaling by small molecules can effectively prevent IL-1β- and TNFα-induced cartilage degradation by blocking MMP expression and activity. Furthermore, we elucidate the involvement of WNT/β-catenin signaling in IL-1β- and TNFα-induced cartilage degradation.

UI MeSH Term Description Entries
D010569 Perylene A 20-carbon dibenz(de,kl)anthracene that can be viewed as a naphthalene fused to a phenalene or as dinaphthalene. It is used as fluorescent lipid probe in the cytochemistry of membranes and is a polycyclic hydrocarbon pollutant in soil and water. Derivatives may be carcinogenic. Perilene,Peri-Dinaphthalene,Peri Dinaphthalene
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001168 Arthritis Acute or chronic inflammation of JOINTS. Oligoarthritis,Polyarthritis,Arthritides,Oligoarthritides,Polyarthritides
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053583 Interleukin-1beta An interleukin-1 subtype that is synthesized as an inactive membrane-bound pro-protein. Proteolytic processing of the precursor form by CASPASE 1 results in release of the active form of interleukin-1beta from the membrane. IL-1 beta,Catabolin,Interleukin-1 beta,Interleukin 1 beta,Interleukin 1beta
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell

Related Publications

Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
January 2019, International journal of clinical and experimental pathology,
Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
April 2013, Bioorganic & medicinal chemistry letters,
Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
January 2013, Current pharmaceutical design,
Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
February 2018, International immunopharmacology,
Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
June 2016, Cell reports,
Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
June 2017, Experimental biology and medicine (Maywood, N.J.),
Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
March 2017, Scientific reports,
Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
January 2023, Current topics in medicinal chemistry,
Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
August 2019, International immunopharmacology,
Ellie B M Landman, and Razvan L Miclea, and Clemens A van Blitterswijk, and Marcel Karperien
January 2017, PloS one,
Copied contents to your clipboard!