Transcapillary adenosine transport in isolated guinea pig and rat hearts. 1990

D E Mohrman, and L J Heller
Department of Physiology, University of Minnesota, Duluth 55812.

Transcapillary adenosine transport was studied in isolated guinea pig and rat hearts perfused with a colloid-free solution. High-performance liquid chromatography techniques were used to measure adenosine concentration of venous and interstitial (epicardial surface) fluid during steady-state perfusion with various concentrations of adenosine. A mathematical model was used to analyze these data to obtain estimates of the following parameters of transcapillary adenosine transport: PSg, permeability-surface area product for adenosine movement through interendothelial cell channels; PSecl, permeability-surface area product for adenosine movement through the luminal plasma membrane of endothelial cells; and Gec, clearance rate constant for endothelial cell metabolism and/or sequestration of adenosine. In both guinea pig and rat hearts, PSg was estimated to be less than or equal to 3 ml.min-1.g-1. Estimates of PSecl and Gec of guinea pig hearts (7.2 +/- 0.4 and 230 +/- 157 ml.min-1.g-1) were significantly less than those of rat hearts (66 +/- 11 and 2,490 +/- 1,360 ml.min-1.g-1). That PSecl is greater than PSg in both species indicates that endothelial cells represent an important pathway for transcapillary adenosine transport. That Gec is much greater than PSecl in both species implies that endothelial cells act as a sink for adenosine from surrounding areas. Our results indicate that endothelium is a stronger sink for adenosine in rat hearts than in guinea pig hearts. Inosine infusion (10(-4)M) had little effect on the estimated PSecl and Gec in guinea pig hearts but reduced these parameters several-fold in rat hearts, suggesting that different transport mechanisms for adenosine exist in endothelia of guinea pig and rat hearts.

UI MeSH Term Description Entries
D007288 Inosine A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed)
D008297 Male Males
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D004176 Dipyridamole A phosphodiesterase inhibitor that blocks uptake and metabolism of adenosine by erythrocytes and vascular endothelial cells. Dipyridamole also potentiates the antiaggregating action of prostacyclin. (From AMA Drug Evaluations Annual, 1994, p752) Antistenocardin,Apo-Dipyridamole,Cerebrovase,Cléridium,Curantil,Curantyl,Dipyramidole,Kurantil,Miosen,Novo-Dipiradol,Persantin,Persantine,Apo Dipyridamole,Novo Dipiradol
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan

Related Publications

D E Mohrman, and L J Heller
July 1989, The American journal of physiology,
D E Mohrman, and L J Heller
September 1991, The American journal of physiology,
D E Mohrman, and L J Heller
January 1993, Basic research in cardiology,
D E Mohrman, and L J Heller
February 1997, The American journal of physiology,
D E Mohrman, and L J Heller
July 1993, The American journal of physiology,
D E Mohrman, and L J Heller
April 1992, The American journal of physiology,
D E Mohrman, and L J Heller
June 1988, The American journal of physiology,
D E Mohrman, and L J Heller
May 2005, American journal of physiology. Heart and circulatory physiology,
D E Mohrman, and L J Heller
November 1989, The American journal of physiology,
Copied contents to your clipboard!