Inorganic phosphate as regulator of adenosine formation in isolated guinea pig hearts. 1997

M W Gorman, and M X He, and C S Hall, and H V Sparks
Department of Physiology, Michigan State University, East Lansing 48824, USA.

This study evaluated cytosolic P(i) as an independent regulator of cardiac adenosine formation by dissociating changes in P(i) from changes in AMP and ADP. Myocardial high-energy phosphates (HEP), measured by (31)P nuclear magnetic resonance spectroscopy, were depleted acutely by perfusing isolated guinea pig hearts with 2-deoxyglucose (2-DG), and the effects of 2-DG were compared with a norepinephrine infusion producing similar changes in HEP. 2-DG treatment resulted in lower adenosine release (R(ado)) (54 +/- 18 vs. 622 +/- 199 pmol x min(-1) x g(-1)) and P(i) concentration ([P(i)]) (0.5 +/- 0.1 vs. 6.0 +/- 0.9 mM) than norepinephrine despite similar AMP concentration ([AMP]). Chronic phosphocreatine depletion produced by beta-guanidinopropionic acid feeding also reduced R(ado) and P(i) during hypoxia. Replacement of perfusate glucose and pyruvate with acetate increased R(ado) (from 39 +/- 12 to 356 +/- 100 pmol x min(-1) x g(-1)) and [P(i)] (from 2.0 +/- 0.5 to 5.1 +/- 0.6 mM) with no change in cytosolic [AMP]. Adenosine kinase isolated from guinea pig hearts was inhibited by [P(i)] values seen during hypoxia or hypoperfusion. We conclude that cytosolic [P(i)] can be an important regulator of cardiac adenosine formation through inhibition of adenosine kinase.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic

Related Publications

M W Gorman, and M X He, and C S Hall, and H V Sparks
March 1991, Circulation research,
M W Gorman, and M X He, and C S Hall, and H V Sparks
September 1990, The American journal of physiology,
M W Gorman, and M X He, and C S Hall, and H V Sparks
October 1986, Cardiovascular research,
M W Gorman, and M X He, and C S Hall, and H V Sparks
September 1991, The American journal of physiology,
M W Gorman, and M X He, and C S Hall, and H V Sparks
January 1993, Basic research in cardiology,
M W Gorman, and M X He, and C S Hall, and H V Sparks
November 1989, The American journal of physiology,
M W Gorman, and M X He, and C S Hall, and H V Sparks
July 1993, The American journal of physiology,
M W Gorman, and M X He, and C S Hall, and H V Sparks
September 1992, Cardiovascular research,
M W Gorman, and M X He, and C S Hall, and H V Sparks
July 1988, Circulation research,
M W Gorman, and M X He, and C S Hall, and H V Sparks
May 2005, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!