Inhibition of the receptor-mediated endocytosis of diferric transferrin is associated with the covalent modification of the transferrin receptor with palmitic acid. 1990

E Alvarez, and N Gironès, and R J Davis
Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester 01655.

The human transferrin receptor is post-translationally modified by the covalent attachment of palmitic acid to Cys62 and Cys67 via a thio-ester bond. To investigate the role of the acylation of the transferrin receptor, Cys62 and Cys67 were substituted with serine and alanine residues. The properties of the mutant receptors were compared with wild-type receptors after expression in Chinese hamster ovary cells that lack endogenous transferrin receptors. Rapid incorporation of [3H]palmitate into the wild-type transferrin receptor was observed, but the mutant receptors were found to be palmitoylation-defective. The kinetics of endocytosis and recycling of the wild-type and mutant receptors were compared. It was observed that the rate of endocytosis of the palmitoylation-defective transferrin receptors was significantly greater than the rate measured for the wild-type transferrin receptor. In contrast, the mutation of Cys62 and Cys67 was found to have no significant effect on the rate of transferrin receptor recycling. Consistent with these observations, it was found that cells expressing palmitoylation-defective transferrin receptors exhibited an increased rate of accumulation of [59Fe]diferric transferrin. Together, these data indicate that the palmitoylation of the transferrin receptor is associated with an inhibition of the rate of transferrin receptor endocytosis. Addition of insulin to cultured cells causes an increase in the palmitoylation of cell surface transferrin receptors and a decrease in the rate of transferrin receptor internalization. It was observed that the effect of insulin to inhibit the endocytosis of the acylation-defective [Ala62 Ala67]transferrin receptor was attenuated in comparison with the wild-type receptor. The decreased effectiveness of insulin to inhibit the internalization of the acylation-defective transferrin receptor is consistent with the hypothesis that palmitoylation represents a potential mechanism for the regulation of transferrin receptor endocytosis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003553 Cystine A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine. Copper Cystinate,L-Cystine,L Cystine
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses

Related Publications

E Alvarez, and N Gironès, and R J Davis
April 1989, The Biochemical journal,
E Alvarez, and N Gironès, and R J Davis
August 1987, Biochemical and biophysical research communications,
E Alvarez, and N Gironès, and R J Davis
December 2004, Blood,
E Alvarez, and N Gironès, and R J Davis
August 1983, The Journal of cell biology,
E Alvarez, and N Gironès, and R J Davis
April 1983, The Journal of biological chemistry,
E Alvarez, and N Gironès, and R J Davis
March 1986, Biochimie,
E Alvarez, and N Gironès, and R J Davis
December 2009, The protein journal,
E Alvarez, and N Gironès, and R J Davis
April 1983, Proceedings of the National Academy of Sciences of the United States of America,
E Alvarez, and N Gironès, and R J Davis
February 1993, Journal of cell science,
E Alvarez, and N Gironès, and R J Davis
August 1985, Journal of cellular physiology,
Copied contents to your clipboard!