The 5'-flanking region of the mouse vascular smooth muscle alpha-actin gene contains evolutionarily conserved sequence motifs within a functional promoter. 1990

B H Min, and D N Foster, and A R Strauch
Ohio State Biochemistry Program, Ohio State University, Wooster 44691.

The 5'-flanking, 5'-untranslated, and amino-terminal protein coding regions of the single-copy 13-kilobase mouse vascular smooth muscle (VSM) alpha-actin gene have been cloned and sequenced. Respectively, there is 73 and 89% homology from the start of transcription (+1) to a point 206 base pairs upstream when comparing mouse to chicken and mouse to human VSM alpha-actin 5'-flanking region sequences. Two proximal 16-base pair motifs containing putative cis-acting regulatory elements having the configuration CC(A/T)6GG were found to be 100% conserved and present in the same position upstream from the transcription start site in all three species. A third more distal CC(A/T)6GG-like motif was 100% conserved between only the mouse and human genes whereas a fourth motif was unique to the mouse gene. The two upstream motifs may be important in controlling VSM alpha-actin gene transcription in mammals. Cell transfection assays using hGH reporter gene fusion plasmids showed that all four CC(A/T)6GG elements were required for tissue-specific, core promoter activity and were able to direct hGH expression in both mouse BC3H1 myogenic cells and early-passage rabbit aortic smooth muscle cells. The core promoter was not active in mouse fibroblasts suggesting that the region between -372 and -143 may mediate tissue-restrictive expression of the VSM alpha-actin gene. A putative "cell density responsive element" may be located between -1074 and -372 since fusion plasmids containing this portion of the VSM alpha-actin 5'-flanking region were significantly more active in promoting hGH expression in inducible, density-activated BC3H1 myoblasts compared to aortic smooth muscle cells which are largely constitutive for VSM alpha-actin expression.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B H Min, and D N Foster, and A R Strauch
November 1987, Nucleic acids research,
B H Min, and D N Foster, and A R Strauch
January 2012, Molecular and cellular biochemistry,
B H Min, and D N Foster, and A R Strauch
May 1988, Nucleic acids research,
B H Min, and D N Foster, and A R Strauch
April 1997, Cellular and molecular neurobiology,
B H Min, and D N Foster, and A R Strauch
April 1985, The Journal of biological chemistry,
B H Min, and D N Foster, and A R Strauch
March 1995, The Journal of biological chemistry,
B H Min, and D N Foster, and A R Strauch
March 1990, Nucleic acids research,
Copied contents to your clipboard!