Evolutionarily conserved promoter region containing CArG*-like elements is crucial for smooth muscle myosin heavy chain gene expression. 1998

A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
Division of Cardiology and Cardiovascular Research Center, University of Cincinnati, Ohio 45267, USA.

In recent years, significant progress has been made toward understanding skeletal muscle development. However, the mechanisms that regulate smooth muscle development and differentiation are presently unknown. To better understand smooth muscle-specific gene expression, we have focused our studies on the smooth muscle myosin heavy chain (SMHC) gene, a highly specific marker of differentiated smooth muscle cells. The goal of the present study was to isolate and characterize the mouse SMHC gene promoter, since the mouse promoter would be particularly suited for in vivo promoter analyses in transgenic mice and would serve as a tool for targeting genes of interest into smooth muscle cells. We report here the isolation and characterization of the mouse SMHC promoter and its 5' flanking region. DNA sequence analysis of a 2.6-kb portion of the promoter identified several potential binding sites for known transcription factors. Transient transfection analysis of promoter deletion constructs in primary cultures of smooth muscle cells showed that the region between -1208 and -1050 bp is critical for maximal SMHC promoter activity. A comparison of SMHC promoter sequences from mouse, rat, and rabbit revealed the presence of a highly conserved region located between -967 and -1208 bp. This region includes three CArG/CArG*-like elements, two SP-1 binding sites, a NF-1-like element, an Nkx2-5 binding site, and an Elk-1 binding site. Gel mobility shift assay and DNase I footprinting analyses show that all three CArG/CArG*-like elements can form DNA-protein complexes with nuclear extract from vascular smooth muscle cells. Protein binding to the CArG* elements can be competed out by either serum response element or by an authentic CArG element from the cardiac alpha-actin gene. Using a serum response factor (SRF) antibody, we demonstrate that SRF is part of the protein complex. In addition, we show that cotransfection with the SRF dominant-negative mutant expression vector abolishes SMHC promoter activity, suggesting that SRF protein plays a critical role in SMHC gene regulation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001013 Aorta, Thoracic The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA. Aorta, Ascending,Aorta, Descending,Aortic Arch,Aortic Root,Arch of the Aorta,Descending Aorta,Sinotubular Junction,Ascending Aorta,Thoracic Aorta,Aortic Roots,Arch, Aortic,Ascending Aortas,Junction, Sinotubular,Root, Aortic,Sinotubular Junctions

Related Publications

A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
June 1996, Development genes and evolution,
A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
December 1994, The Journal of biological chemistry,
A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
April 2001, The Journal of clinical investigation,
A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
August 1989, The Journal of biological chemistry,
A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
November 1997, The Journal of biological chemistry,
A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
April 1993, American journal of medical genetics,
A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
June 1996, The Journal of biological chemistry,
A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
January 2014, PloS one,
A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
June 2006, American journal of physiology. Cell physiology,
A Zilberman, and V Dave, and J Miano, and E N Olson, and M Periasamy
January 1992, Cellular and molecular biology (Noisy-le-Grand, France),
Copied contents to your clipboard!