Quantitative structure-antimicrobial activity relationship in 5 beta-cholanyl-24-benzylamine derivatives. 1990

A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
Istituto di Scienze Chimiche, Bologna, Italy.

Some representative physicochemical properties of benzylamido and amino derivatives of common bile acids have been determined and correlated with their antimicrobial activity against gram-positive bacterial strains. Steroid hydroxyls do not affect the basicity of amino derivatives; they promote solubility in a parallel way to unconjugated bile acids and mainly control hydrophobicity of this class of compounds as measured by log P values. Activity was correlated to hydrophobicity; that is, the nature of the side chain modulated activity, affected basicity, and facilitated changes in partition ability. Benzylamino derivatives proved to be even more active than the corresponding amides when ionization is taken into account. Trihydroxy derivatives possess the lowest log P values and were practically inactive. Decreased activity was also observed in those cases where, due to the orientation of the hydroxy group in the 6 or 7 position, the back beta face of the molecule had a reduced hydrophobic surface area. Antimicrobial activity, in terms of -log MIC (minimal inhibitory concentration), was found to correlate linearly with log P values of uncharged species. This linear relationship is discussed with respect to the structure of the steroid moiety and the ability of these molecules to cross cellular membranes.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D002757 Cholanes
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001596 Benzylamines Toluenes in which one hydrogen of the methyl group is substituted by an amino group. Permitted are any substituents on the benzene ring or the amino group. Phenylmethylamine,alpha-Aminotoluene,alpha Aminotoluene
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
April 1976, Japanese journal of pharmacology,
A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
July 1991, Chemical & pharmaceutical bulletin,
A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
August 1985, Il Farmaco; edizione scientifica,
A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
December 1976, Chemical & pharmaceutical bulletin,
A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
November 2007, Bioorganic & medicinal chemistry letters,
A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
October 1987, Research communications in chemical pathology and pharmacology,
A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
January 1992, APMIS. Supplementum,
A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
January 2015, Bioorganic & medicinal chemistry letters,
A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
January 1989, Mikrobiologicheskii zhurnal,
A Fini, and A Roda, and A M Bellini, and E Mencini, and M Guarneri
April 1989, Neuropharmacology,
Copied contents to your clipboard!