Additional intragenic promoter elements of the Xenopus 5S RNA genes upstream from the TFIIIA-binding site. 1990

H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
Division of Developmental Biology, Medical Biology Institute, La Jolla, California 92037.

The major promoter element of the Xenopus laevis 5S RNA gene is located within the transcribed region of the gene and forms the binding site for the transcription initiation factor TFIIIA. We report an analysis of deletion and substitution mutations within the coding region of the major oocyte-type 5S gene of X. laevis. Our results differ from those of previous mutagenesis studies conducted on the somatic-type genes of Xenopus borealis and X. laevis. Transcription assays in whole oocyte S-150 extracts, with both oocyte- and somatic-type mutants, revealed additional promoter elements between the start site for transcription and the binding site for TFIIIA. These sequences regulate the efficiency of binding TFIIIC, a transcription factor required by the genes transcribed by RNA polymerase III containing intragenic promoters. Under TFIIIC-limiting conditions, the somatic-type gene had a 10-fold-higher affinity for TFIIIC than did the major oocyte-type 5S gene. One mutation in the oocyte-type gene (nucleotides +33 to +39) reduced TFIIIC affinity and transcriptional activity four- to fivefold. Differences in TFIIIC affinity between oocyte- and somatic-type genes may contribute to the differential transcription of these genes observed during Xenopus embryogenesis.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012341 RNA, Ribosomal, 5S Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis. 5S Ribosomal RNA,5S rRNA,RNA, 5S Ribosomal,Ribosomal RNA, 5S,rRNA, 5S

Related Publications

H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
July 1992, Molecular and cellular biology,
H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
March 1988, Molecular and cellular biology,
H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
November 1987, Molecular and cellular biology,
H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
June 1992, Nucleic acids research,
H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
July 1995, Nucleic acids research,
H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
October 1989, Genes & development,
H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
September 1991, Gene,
H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
October 1987, Molecular and cellular biology,
H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
March 2004, Molecular and cellular biology,
H J Keller, and Q M You, and P J Romaniuk, and J M Gottesfeld
March 1998, Molecular and cellular biology,
Copied contents to your clipboard!